SEARCH

SEARCH BY CITATION

Keywords:

  • ascidian;
  • cyclic AMP;
  • follicle cell;
  • germinal vesicle;
  • oocyte

Many ascidian oocytes undergo ‘spontaneous’ germinal vesicle breakdown (GVBD) when transferred from the ovary to normal pH 8.2 sea water (SW); however, low pH inhibits GVBD, which can then be stimulated while remaining in the low pH SW. Oocytes of Boltenia villosa blocked from GVBD by pH 4 SW undergo GVBD in response to permeant cyclic AMP (8-bromo-cyclic AMP), phosphodiesterase inhibitors (isobutylmethylxanthine and theophylline) or the adenylyl cyclase activator forskolin. This suggests that cAMP increases during GVBD. Removal of the follicle cells or addition of a protease inhibitor inhibits GVBD in response to raised pH but not to forskolin, theophylline or 8 bromo-cAMP. Isolated follicle cells in low pH SW release protease activity in response to an increase in pH. These studies imply that the follicle cells release protease activity, which either itself stimulates an increase in oocyte cAMP level or reacts with other molecules to stimulate this process. Studies with the mitogen-activated protein (MAP) kinase inhibitors U0126 and CI 1040 suggest that MAP kinase is not involved in GVBD. The Cdc25 inhibitor NSC 95397 inhibits GVBD at 200 nm in a reversible manner.