SEARCH

SEARCH BY CITATION

References

  • Amikura, R., Hanyu, K., Kashikawa, M. & Kobayashi, S. 2001. Tudor protein is essential for the localization of mitochondrial RNAs in polar granules of Drosophila embryos. Mech. Dev. 107, 97104.
  • Aoyagi, S., Wade, P. A. & Hayes, J. J. 2003. Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism. J. Biol. Chem. 278, 3056230568.
  • Arkov, A. L., Wang, J. Y., Ramos, A. & Lehmann, R. 2006. The role of Tudor domains in germline development and polar granule architecture. Development 133, 40534062.
  • Bilinski, S. M., Jaglarz, M. K., Szymanska, B., Etkin, L. D. & Kloc, M. 2004. Sm proteins, the constituents of the spliceosome, are components of nuage and mitochondrial cement in Xenopus oocytes. Exp. Cell Res. 299, 171178.
  • Bischoff, F. R. & Ponstingl, H. 1991. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 8082.
  • Boswell, R. E. & Mahowald, A. P. 1985. Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43, 97104.
  • Bouvet, P., Matsumoto, K. & Wolffe, A. P. 1995. Sequence-specific RNA Recognition by the Xenopus Y-box Proteins. J. Biol. Chem. 270, 2829728303.
  • Bühler, D., Raker, V., Lührmann, R. & Fischer, U. 1999. Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8, 23512357.
  • Chen, R.-H., Shevchenko, A., Mann, M. & Murray, A. W. 1998. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283295.
  • Chomczynski, P. & Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156159.
  • Chuma, S., Hiyoshi, M., Yamamoto, A., Hosokawa, M., Takamune, K. & Nakatsuji, N. 2003. Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech. Dev. 120, 979990.
  • Chuma, S., Hosokawa, M., Kitamura, K., Kasai, S., Fujioka, M., Hiyoshi, M., Takamune, K., Noce, T. & Nakatsuji, N. 2006. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl Acad. Sci. USA 103, 1589415899.
  • Dasso, M. 2002. The Ran GTPase: theme and variations. Curr. Biol. 12, R502R508.
  • Deschamps, S., Viel, A., Garrigos, M., Denis, H. & Le Maire, M. 1992. mRNP4, a major mRNA-binding protein from Xenopus oocytes is identical to transcription factor FRGY2. J. Biol. Chem. 267, 1379913802.
  • Golumbeski, G. S., Bardsley, A., Tax, F. & Boswell, R. E. 1991. Tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis. Genes Dev. 5, 20602070.
  • Gonsalvez, G. B., Rajendra, T. K., Tian, L. & Matera, A. G. 2006. The Sm-protein methytransferase, Dart5, is essential for germ-cell specification and maintenance. Curr. Biol. 16, 10771089.
  • Groen, A. C., Cameron, L. A., Coughlin, M., Miyamoto, D. T., Mitchison, T. J. & Ohi, R. 2004. XRHAMM functions in Ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr. Biol. 14, 18011811.
  • Gu, W., Tekur, S., Reinbold, R., Eppig, J. J., Choi, Y.-C., Zheng, J. Z., Murray, M. T. & Hecht, N. B. 1998. Mammalian male and female germ cells express a germ cell-specific Y-box protein, MSY2. Biol. Reprod. 59, 12661274.
  • Harlow, E. & Lane, D. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.
  • Hiyoshi, M., Nakajo, N., Abe, S.-I. & Takamune, K. 2005. Involvement of Xtr (Xenopus tudor repeat) in microtubule assembly around nucleus and karyokinesis during cleavage in Xenopus laevis. Dev. Growth Differ. 47, 109117.
  • Hiyoshi, H., Uno, S., Yokota, T., Katagiri, Ch., Nishida, H., Takai, M., Agata, K., Eguchi, G. & Abe, S.-I. 1991. Isolation of cDNA for Xenopus sperm-specific basic nuclear protein (SP4) and evidence for expression of SP4 mRNA in primary spermatocytes. Exp. Cell Res. 194, 9599.
  • Hosokawa, M., Shoji, M., Kitamura, K., Tanaka, T., Noce, T., Chuma, S. & Nakatsuji, N. 2007. Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev. Biol. 301, 3852.
  • Houston, D. W., Zhang, J., Maines, J. Z., Wasserman, S. A. & King, M. L. 1998. A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125, 171180.
  • Houston, D. W. & King, M. L. 2000. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127, 447456.
  • Hovary, K., Claußen, M., Katzer, M., Landgrebe, J. & Pieler, T. 2006. Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development. Dev. Biol. 291, 111.
  • Hudson, C. & Woodland, H. R. 1998. Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mech. Dev. 73, 159168.
  • Ikema, Y., Hiyoshi, M., Daiyasu, H., Toh, H., Mori, M. & Takamune, K. 2002. Two novel genes expressed in Xenopus germ line: characteristic features of putative protein structures, their gene expression profiles and their possible roles in gametogenesis and embryogenesis. Mol. Reprod. Dev. 62, 421430.
  • Illmensee, K. & Mahowald, A. P. 1974. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl Acad. Sci. USA 71, 10161020.
  • Kinoshita, M., Hatada, S., Asashima, M. & Noda, M. 1994. HMG-X, a Xenopus gene encoding an HMG1 homolog, is abundantly expressed in the developing nervous system. FEBS Lett. 352, 191196.
  • Kubo, H., Matsushita, M., Kotani, M., Kawasaki, H., Saido, T. C., Kawashima, S., Katagiri, Ch. & Suzuki, A. 1999. Molecular basis for oviductin-mediated processing from gp43 to gp41, the predominant glycoproteins of Xenopus egg envelopes. Dev. Genet. 25, 123129.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Lancelot, N., Charier, G., Couprie, J., Duband-Goulet, I., Alpha-Bazin, B., Que-meneur, E., Ma, E., Marsolier-Kergoat, M. C., Ropars, V., Charbonnier, J. B., Miron, S., Craescu, C. T., Callebaut, I., Gilquin, B. & Zinn-Justin, S. 2007. The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA. Nucleic Acids Res. 35, 58985912.
  • Liu, Q., Fischer, U., Wang, F. & Dreyfuss, G. 1997. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90, 10131021.
  • MacArthur, H., Houston, D. W., Bubunenko, M., Mosquera, L. & King, M. L. 2000. DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mech. Dev. 95, 291295.
  • Mahowald, A. P. 1962. Fine structure of pole cells and polar granules in Drosophila melanogaster. J. Exp. Zool. 228, 9197.
  • Marikawa, Y. & Elinson, R. P. 1998. β-TrCP is a negative regulator of Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech. Dev. 77, 7580.
  • Matsumoto, K., Meric, F. & Wolffe, A. P. 1996. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. J. Biol. Chem. 271, 2270622712.
  • Minshall, N., Reiter, M. H., Weil, D. & Standart, N. 2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 3738937401.
  • Mosquera, L., Forristall, C., Zhou, Y. & King, M. L. 1993. An mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 117, 377386.
  • Murray, M. T., Schiller, D. L. & Franke, W. W. 1992. Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proc. Natl Acad. Sci. USA 89, 1115.
  • Ohtsubo, M., Okazaki, H. & Nishimoto, T. 1989. The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J. Cell Biol. 109, 13891397.
  • Okada, M., Kleinman, I. A. & Schneiderman, H. A. 1974. Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev. Biol. 37, 4354.
  • Oko, R., Korley, R., Murray, M. T., Hecht, N. B. & Hermo, L. 1996. Germ cell-specific DNA and RNA binding proteins p48/52 are expressed at specific stages of male germ cell development and are present in the chromatoid body. Mol. Reprod. Dev. 44, 113.
  • Ponting, C. P. 1997. Tudor domains in proteins that interact with RNA. Trends Biochem. Sci. 22, 5152.
  • Robb, D. L., Heasman, J., Raats, J. & Wylie, C. 1996. A kinesine-like protein is required for germ plasm aggregation in Xenopus. Cell 87, 823831.
  • Selenko, P., Sprangers, R., Stier, G., Bühler, D., Fischer, U. & Sattler, M. 2001. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 2731.
  • Selman, S., Wallace, R. A., Sarka, A. & Qi, X. 1993. Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218, 203224.
  • Smith, L. D. 1966. The role of a ‘germinal plasm’ in the formation of primordial germ cells in Rana pipiens. Dev. Biol. 14, 330347.
  • Sprangers, R., Groves, M. R., Sinning, I. & Sattler, M. 2003. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507520.
  • Strome, S. & Wood, W. B. 1982. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae and adults of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 79, 15581562.
  • Tadesse, H., Deschênes-Furry, J., Boisvenue, S. & Côté, J. 2008. KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum. Mol. Genet. 17, 506524.
  • Tafuri, S. R. & Wolffe, A. P. 1990. Xenopus Y-box transcription factors: molecular cloning, functional analysis and developmental regulation. Proc. Natl Acad. Sci. USA 87, 90289032.
  • Tafuri, S. R. & Wolffe, A. P. 1992. DNA binding, multimerization, and transcription stimulation by the Xenopus Y box proteins in vitro. New Biol. 4, 349359.
  • Tafuri, S. R. & Wolffe, A. P. 1993. Selective recruitment of masked maternal mRNA from messenger ribonucleoprotein particles containing FRGY2 (mRNP4). J. Biol. Chem. 15, 2425524261.
  • Vasileva, A., Tiedau, D., Firooznia, A., Muller-Reichert, T. & Jessberger, R. 2009. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 19, 630639.
  • Wakahara, M. 1978. Induction of supernumerary primordial germ cells by injecting vegetal pole cytoplasm into Xenopus eggs. J. Exp. Zool. 203, 159164.
  • Whitington, P. M. & Dixon, K. E. 1975. Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J. Embryol. Exp. Morphol. 33, 5774.
  • Yamamoto, T. M., Lewellyn, A. L. & Maller, J. L. 2008. Regulation of the Aurora B chromosome passenger protein complex during oocyte maturation in Xenopus laevis. Mol. Cell. Biol. 28, 41964203.
  • Yan, Q., Cho, E., Lockett, S. & Muegge, K. 2003. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell. Biol. 23, 84168428.
  • Yang, J., Medvedev, S., Reddi, P. P., Schultz, R. M. & Hecht, N. B. 2005. The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells. Proc. Natl Acad. Sci. USA 102, 15131518.
  • Yang, J., Medvedev, S., Yu, J., Schultz, R. M. & Hecht, N. B. 2006. Deletion of the DNA/RNA-binding protein MSY2 leads to post-meiotic arrest. Mol. Cell. Endocrinol. 250, 2024.
  • Yu, J., Hecht, N. B. & Schultz, R. M. 2002. RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. Biol. Reprod. 67, 10931098.