• courtship behavior;
  • Doublesex;
  • Drosophila;
  • Fruitless;
  • sexual dimorphism

Currently, sex differences in behavior are believed to result from sexually dimorphic neural circuits in the central nervous system (CNS). Drosophila melanogaster is a common model organism for studying the relationship between brain structure, behavior, and genes. Recent studies of sex-specific reproductive behaviors in D. melanogaster have addressed the contribution of sexual differences in the CNS to the control of sex-specific behaviors and the development of sexual dimorphism. For example, sexually dimorphic regions of the CNS are involved in the initiation of male courtship behavior, the generation of the courtship song, and the induction of male-specific muscles in D. melanogaster. In this review, I discuss recent findings about the contribution of cell death to the formation of sexually dimorphic neural circuitry and the regulation of sex-specific cell death by two sex determination factors, Fruitless and Doublesex, in Drosophila.