SEARCH

SEARCH BY CITATION

Keywords:

  • chimera;
  • genetic relatedness;
  • kin discrimination;
  • kin selection;
  • social evolution

Dictyostelium discoideum has been very useful for elucidating principles of development over the last 50 years, but a key attribute means there is a lot to be learned from a very different intellectual tradition: social evolution. Because Dictyostelium arrives at multicellularity by aggregation instead of through a single-cell bottleneck, the multicellular body could be made up of genetically distinct cells. If they are genetically distinct, natural selection will result in conflict over which cells become fertile spores and which become dead stalk cells. Evidence for this conflict includes unequal representation of two genetically different clones in spores of a chimera, the poison-like differentiation inducing factor (DIF) system that appears to involve some cells forcing others to become stalk, and reduced functionality in migrating chimeras. Understanding how selection operates on chimeras of genetically distinct clones is crucial for a comprehensive view of Dictyostelium multicellularity. In nature, Dictyostelium fruiting bodies are often clonal, or nearly so, meaning development will often be very cooperative. Relatedness levels tell us what benefits must be present for sociality to evolve. Therefore it is important to measure relatedness in nature, show that it has an impact on cooperation in the laboratory, and investigate genes that Dictyostelium uses to discriminate between relatives and non-relatives. Clearly, there is a promising future for research at the interface of development and social evolution in this fascinating group.