SEARCH

SEARCH BY CITATION

References

  • Akematsu, T., Pearlman, R. E. & Endoh, H. 2010. Gigantic macroautophagy in programmed nuclear death of Tetrahymena thermophila. Autophagy 6, 901911.
  • Aronica, L., Bednenko, J., Noto, T., Desouza, L. V., Siu, K. W., Loidl, J., Pearlman, R. E., Gorovsky, M. A. & Mochizuki, K. 2008. Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev. 22, 22282241.
  • Austerberry, C. F., Snyder, R. O. & Yao, M. C. 1989. Sequence microheterogeneity is generated at junctions of programmed DNA deletions in Tetrahymena thermophila. Nucleic Acids Res. 17, 72637272.
  • Austerberry, C. F. & Yao, M. C. 1988. Sequence structures of two developmentally regulated, alternative DNA deletion junctions in Tetrahymena thermophila. Mol. Cell. Biol. 8, 39473950.
  • Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972977.
  • Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E. & Betermier, M. 2009. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 23, 24782483.
  • Bednenko, J., Noto, T., Desouza, L. V., Siu, K. W., Pearlman, R. E., Mochizuki, K. & Gorovsky, M.A. 2009. Two GW repeat proteins interact with the tetrahymena argonaute and promote genome rearrangement. Mol. Cell. Biol. 29, 50205030.
  • Beermann, S. 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60, 297344.
  • Biemont, C. & Vieira, C. 2006. Genetics: junk DNA as an evolutionary force. Nature 443, 521524.
  • Bouhouche, K., Gout, J. F., Kapusta, A., Betermier, M. & Meyer, E. 2011. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res. 39, 42494264.
  • Cervantes, M. D., Xi, X., Vermaak, D., Yao, M. C. & Malik, H. S. 2006. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol. Biol. Cell 17, 485497.
  • Chalker, D. L., Fuller, P. & Yao, M. C. 2005. Communication between parental and developing genomes during tetrahymena nuclear differentiation is likely mediated by homologous RNAs. Genetics 169, 149160.
  • Chalker, D. L. & Yao, M. C. 1996. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Mol. Cell. Biol. 16, 36583667.
  • Chalker, D. L. & Yao, M. C. 2001. Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev. 15, 12871298.
  • Cheng, C. Y., Vogt, A., Mochizuki, K. & Yao, M. C. 2010. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 17531762.
  • Claycomb, J. M., Batista, P. J., Pang, K. M., Gu, W., Vasale, J. J., van Wolfswinkel, J. C., Chaves, D. A., Shirayama, M., Mitani, S., Ketting, R. F., Conte, D. & Mello, C. C. 2009. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123134.
  • Couvillion, M. T., Lee, S. R., Hogstad, B., Malone, C. D., Tonkin, L. A., Sachidanandam, R., Hannon, G. J. & Collins, K. 2009. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 23, 20162032.
  • Coyne, R. S., Nikiforov, M. A., Smothers, J. F., Allis, C. D. & Yao, M. C. 1999. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol. Cell 4, 865872.
  • Coyne, R. S., Thiagarajan, M., Jones, K. M., Wortman, J. R., Tallon, L. J., Haas, B. J., Cassidy-Hanley, D. M., Wiley, E. A., Smith, J. J., Collins, K., Lee, S. R., Couvillion, M. T., Liu, Y., Garg, J., Pearlman, R. E., Hamilton, E. P., Orias, E., Eisen, J. A. & Methe, B. A. 2008. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 9, 562.
  • Cui, B. & Gorovsky, M. A. 2006. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol. Cell. Biol. 26, 44994510.
  • Duharcourt, S., Butler, A. & Meyer, E. 1995. Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. Genes Dev. 9, 20652077.
  • Eisen, J. A., Coyne, R. S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J. R., Badger, J. H., Ren, Q., Amedeo, P., Jones, K. M., Tallon, L. J., Delcher, A. L., Salzberg, S. L., Silva, J. C., Haas, B. J., Majoros, W. H., Farzad, M., Carlton, J. M., Smith . Jr, R. K., Garg, J., Pearlman, R. E., Karrer, K. M., Sun, L., Manning, G., Elde, N. C., Turkewitz, A. P., Asai, D. J., Wilkes, D. E., Wang, Y., Cai, H., Collins, K., Stewart, B. A., Lee, S. R., Wilamowska, K., Weinberg, Z., Ruzzo, W. L., Wloga, D., Gaertig, J., Frankel, J., Tsao, C. C., Gorovsky, M. A., Keeling, P. J., Waller, R. F., Patron, N. J., Cherry, J. M., Stover, N. A., Krieger, C. J., del Toro, C., Ryder, H. F., Williamson, S. C., Barbeau, R. A., Hamilton, E. P. & Orias, E. 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286.
  • Ender, C. & Meister, G. 2010. Argonaute proteins at a glance. J. Cell Sci. 123, 18191823.
  • Epstein, L. M. & Forney, J. D. 1984. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol. Cell. Biol. 4, 15831590.
  • Fillingham, J. S., Thing, T. A., Vythilingum, N., Keuroghlian, A., Bruno, D., Golding, G. B. & Pearlman, R. E. 2004. A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila. Eukaryot. Cell 3, 157169.
  • Gilbert, S. F. 2010. Developmental Biology. Sinauer Associates Inc., Sunderland, MA.
  • Girard, A. & Hannon, G. J. 2008. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 18, 136148.
  • Goday, C. & Esteban, M. R. 2001. Chromosome elimination in sciarid flies. Bioessays 23, 242250.
  • Goday, C., Gonzalez-Garcia, J. M., Esteban, M. R., Giovinazzo, G. & Pimpinelli, S. 1992. Kinetochores and chromatin diminution in early embryos of Parascaris univalens. J. Cell Biol. 118, 2332.
  • Godiska, R., James, C. & Yao, M. C. 1993. A distant 10-bp sequence specifies the boundaries of a programmed DNA deletion in Tetrahymena. Genes Dev. 7, 23572365.
  • Grewal, S. I. 2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20, 134141.
  • Hamilton, E. P., Williamson, S., Dunn, S., Merriam, V., Lin, C., Vong, L., Russell-Colantonio, J. & Orias, E. 2006. The highly conserved family of Tetrahymena thermophila chromosome breakage elements contains an invariant 10-base-pair core. Eukaryot. Cell 5, 771780.
  • Heinonen, T. Y. & Pearlman, R. E. 1994. A germ line-specific sequence element in an intron in Tetrahymena thermophila. J. Biol. Chem. 269, 1742817433.
  • Horwich, M. D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P. & Zamore, P. D. 2007. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 12651272.
  • Howard-Till, R. A. & Yao, M. C. 2007. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila. Eukaryot. Cell 6, 17951804.
  • Karamysheva, Z., Wang, L., Shrode, T., Bednenko, J., Hurley, L. A. & Shippen, D. E. 2003. Developmentally programmed gene elimination in Euplotes crassus facilitates a switch in the telomerase catalytic subunit. Cell 113, 565576.
  • Karrer, K. M. 2000. Tetrahymena genetics: two nuclei are better than one. Methods Cell Biol. 62, 127186.
  • Kirino, Y. & Mourelatos, Z. 2007. The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 13, 13971401.
  • Kohno, S., Nakai, Y., Satoh, S., Yoshida, M. & Kobayashi, H. 1986. Chromosome elimination in the Japanese hagfish, Eptatretus burgeri (Agnatha, Cyclostomata). Cytogenet. Cell Genet. 41, 209214.
  • Kowalczyk, C. A., Anderson, A. M., Arce-Larreta, M. & Chalker, D. L. 2006. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism. Nucleic Acids Res. 34, 57785789.
  • Kurth, H. M. & Mochizuki, K. 2009. 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 15, 675685.
  • Lee, S. R. & Collins, K. 2006. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev. 20, 2833.
  • Lee, S. R. & Collins, K. 2007. Physical and functional coupling of RNA-dependent RNA polymerase and Dicer in the biogenesis of endogenous siRNAs. Nat. Struct. Mol. Biol. 14, 604610.
  • Lepere, G., Betermier, M., Meyer, E. & Duharcourt, S. 2008. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev. 22, 15011512.
  • Liu, Y., Mochizuki, K. & Gorovsky, M. A. 2004. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 101, 16791684.
  • Liu, Y., Song, X., Gorovsky, M. A. & Karrer, K. M. 2005. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent. Eukaryot. Cell 4, 421431.
  • Liu, Y., Taverna, S. D., Muratore, T. L., Shabanowitz, J., Hunt, D. F. & Allis, C. D. 2007. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 21, 15301545.
  • Lynn, D. H. 2008. The Ciliated Protozoa 3rd Edition. Springer.
  • Madireddi, M. T., Coyne, R. S., Smothers, J. F., Mickey, K. M., Yao, M. C. & Allis, C. D. 1996. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87, 7584.
  • Majewski, J. & Ott, J. 2000. GT repeats are associated with recombination on human chromosome 22. Genome Res. 10, 11081114.
  • Malone, C. D., Anderson, A. M., Motl, J. A., Rexer, C. H. & Chalker, D. L. 2005. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol. Cell. Biol. 25, 91519164.
  • Martindale, D. W., Allis, C. D. & Bruns, P. J. 1985. RNA and protein synthesis during meiotic prophase in Tetrahymena thermophila. J. Protozool. 32, 644649.
  • Meyer, E. & Duharcourt, S. 1996. Epigenetic regulation of programmed genomic rearrangements in Paramecium aurelia. J. Eukaryot. Microbiol. 43, 453461.
  • Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. 2002. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689699.
  • Mochizuki, K. & Gorovsky, M. A. 2004a. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 18, 20682073.
  • Mochizuki, K. & Gorovsky, M. A. 2004b. RNA polymerase II localizes in Tetrahymena thermophila meiotic micronuclei when micronuclear transcription associated with genome rearrangement occurs. Eukaryot. Cell 3, 12331240.
  • Mochizuki, K. & Gorovsky, M. A. 2005. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19, 7789.
  • Muller, F. & Tobler, H. 2000. Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens. Int. J. Parasitol. 30, 391399.
  • Nikiforov, M. A., Smothers, J. F., Gorovsky, M. A. & Allis, C. D. 1999. Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Genes Dev. 13, 28522862.
  • Noto, T., Kurth, H. M., Kataoka, K., Aronica, L., Desouza, L. V., Siu, K. W., Pearlman, R. E., Gorovsky, M. A. & Mochizuki, K. 2010. The tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell 140, 692703.
  • Nowacki, M., Zagorski-Ostoja, W. & Meyer, E. 2005. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr. Biol. 15, 16161628.
  • Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H. & Siomi, M. C. 2007. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 16031608.
  • Satzinger, H. 2008. Theodor and Marcella Boveri: chromosomes and cytoplasm in heredity and development. Nat. Rev. 9, 231238.
  • Saveliev, S. V. & Cox, M. M. 1996. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 15, 28582869.
  • Seto, A. G., Kingston, R. E. & Lau, N. C. 2007. The coming of age for Piwi proteins. Mol. Cell 26, 603609.
  • Sugai, T. & Hiwatashi, K. 1974. Cytologic and autoradiographic studies of the micronucleus at meiotic prophase in Tetrahymena pyriformis. J. Protozool. 21, 542548.
  • Taverna, S. D., Coyne, R. S. & Allis, C. D. 2002. Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110, 701711.
  • Van De Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530536.
  • Wang, H. G. & Fraser, M. J. 1993. TTAA serves as the target site for TFP3 lepidopteran transposon insertions in both nuclear polyhedrosis virus and Trichoplusia ni genomes. Insect Mol. Biol. 1, 109116.
  • Wang, J., Czech, B., Crunk, A., Wallace, A., Mitreva, M., Hannon, G.J. & Davis, R.E. 2011. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 21, 14621477.
  • Wuitschick, J. D., Gershan, J. A., Lochowicz, A. J., Li, S. & Karrer, K. M. 2002. A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. Nucleic Acids Res. 30, 25242537.
  • Yao, M. C., Choi, J., Yokoyama, S., Austerberry, C. F. & Yao, C. H. 1984. DNA elimination in Tetrahymena: a developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 36, 433440.
  • Yao, M. C., Fuller, P. & Xi, X. 2003. Programmed DNA deletion as an RNA-guided system of genome defense. Science 300, 15811584.
  • You, Y., Scott, J. & Forney, J. 1994. The role of macronuclear DNA sequences in the permanent rescue of a non-mendelian mutation in Paramecium tetraurelia. Genetics 136, 13191324.
  • Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R. & Chen, X. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932935.
  • Zou, S., Ke, N., Kim, J. M. & Voytas, D. F. 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10, 634645.