SEARCH

SEARCH BY CITATION

References

  • Altschul, S. F., G, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403410.
  • Arkov, A. L. & Ramos, A. 2010. Building RNA-protein granules: insight from the germline. Trends Cell Biol. 20, 482490.
  • Boswell, R. E. & Mahowald, A. 1985. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43, 97104.
  • Brahms, H., M, L., de Brabandere, V., Fischer, U. & Lührmann, R. 2001. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 15311542.
  • Cauchi, R. J., S-P, L. & Liu, J. L. 2010. Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp. Cell Res. 316, 23542364.
  • Caudy, A. A. & Hannon, G. 2004. Induction and biochemical purification of RNA-induced silencing complex from Drosophila S2 cells. Methods Mol. Biol. 265, 5972.
  • Edgar, R. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 17921797.
  • Fleischer, T. C., Y, U. & Ayer, D. E. 2003. Identification and characterization of three new components of the mSin3A corepressor complex. Mol. Cell. Biol. 23, 34563467.
  • Friberg, A., C, L., Mourão, A. & Sattler, M. 2009. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J. Mol. Biol. 387, 921934.
  • Friberg, A., O, A., Klymenko, T., Müller, J. & Sattler, M. 2010. Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Protein Sci. 19, 19061916.
  • Gao, X., G, L., Shao, J., Su, C., Zhao, H., Saarikettu, J., Yao, X., Yao, Z., Silvennoinen, O. & Yang, J. 2010. Tudor-SN interacts with and co-localizes with G3BP in stress granules under stress conditions. FEBS Lett. 584, 35253532.
  • Golam Mostafa, M., S, T., Hiyoshi, M., Kawasaki, H., Kubo, H., Matsumoto, K., Abe, S. & Takamune, K. 2009. Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: its possible role in translational regulation of maternal mRNAs. Dev. Growth Differ. 51, 595605.
  • Grimson, A., S, M., Fahey, B., Woodcroft, B. J., Chiang, H. R., King, N., Degnan, B. M., Rokhsar, D. S. & Bartel, D. P. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 11931197.
  • Haley, B., H, D., Trang, V. & Levine, M. 2008. A simplified miRNA-based gene silencing method for Drosophila melanogaster. Dev. Biol. 321, 482490.
  • Handler, D., O, D., Novatchkova, M., Gruber, F. S., Meixner, K., Mechtler, K., Stark, A., Sachidanandam, R. & Brennecke, J. 2011. A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30, 397793.
  • Huang, Y., F, J., Bedford, M. T., Zhang, Y. & Xu, R. M. 2006. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748751.
  • Huyen, Y., Z, O., Ditullio R. A. Jr, Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S. & Halazonetis, T. D. 2004. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406411.
  • Ishizu, H., N, A. & Siomi, H. 2011. Gatekeepers for Piwi-piRNA complexes to enter the nucleus. Curr. Opin. Genet. Dev. 21, 484490.
  • Jin, J., X, X., Chen, C., Park, J. G., Stark, C., James, D. A., Olhovsky, M., Linding, R., Mao, Y. & Pawson, T. 2009. Eukaryotic protein domains as functional units of cellular evolution. Sci. Signal. 2, ra76.
  • Jones, D. T., T, W. & Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275282.
  • Kim, J., D, J., Espejo, A., Lake, A., Krishna, M., Xia, L., Zhang, Y. & Bedford, M. T. 2006. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep. 7, 397403.
  • King, F. J., S, A., Cox, D. N. & Lin, H. 2001. Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol. Cell 7, 497508.
  • Kirino, Y., V, A., Sayed, N., de Lima Alves, F., Thomson, T., Lasko, P., Rappsilber, J., Jongens, T. A. & Mourelatos, Z. 2010. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16, 7078.
  • Kumar, S., N, M., Dudley, J. & Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299306.
  • Leverson, J. D., K, P., Orrico, F. C., Rainio, E. M., Jalkanen, K. J., Dash, A. B., Eisenman, R. N. & Ness, S. A. 1998. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell 2, 417425.
  • Little, J. T. & Jurica, M. 2008. Splicing factor SPF30 bridges an interaction between the prespliceosome protein U2AF35 and tri-small nuclear ribonucleoprotein protein hPrp3. J. Biol. Chem. 283, 81458152.
  • Liu, K., C, C., Guo, Y., Lam, R., Bian, C., Xu, C., Zhao, D. Y., Jin, J., MacKenzie, F., Pawson, T. & Min, J. 2010. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl Acad. Sci. USA 107, 1839818403.
  • Mansfield, R. E., M, C., Kwan, A. H., Oliver, S. S., Garske, A. L., Davrazou, F., Denu, J. M., Kutateladze, T. G. & Mackay, J. P. 2011. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J. Biol. Chem. 286, 1177911791.
  • Mo, S., S, P., Lv, D., Chen, Y., Zhou, W., Gong, W. & Zhu, Z. 2005. Zebrafish z-otu, a novel Otu and Tudor domain-containing gene, is expressed in early stages of oogenesis and embryogenesis. Biochim. Biophys. Acta 1732, 17.
  • Nagao, A., M, T., Huang, H., Chen, D., Siomi, M. C. & Siomi, H. 2010. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA 16, 25032515.
  • Ozboyaci, M., G, A., Erman, B. & Keskin, O. 2011. Molecular recognition of H3/H4 histone tails by the tudor domains of JMJD2A: a comparative molecular dynamics simulations study. PLoS One 6, e14765.
  • Park, J. W., P, K., Celotto, A. M., Reenan, R. A. & Graveley, B. R. 2004. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc. Natl Acad. Sci. USA 11, 1597415979.
  • Patil, V. S. & Kai, T. 2010. Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein tejas. Curr. Biol. 20, 724730.
  • Reuter, M., C, S., Tanaka, T., Franz, T., Stark, A. & Pillai, R. S. 2009. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16, 639646.
  • Safran, M., D, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., Sirota-Madi, A., Olender, T., Golan, Y., Stelzer, G., Harel, A. & Lancet, D. 2010. GeneCards Version 3: the human gene integrator. Database (Oxford) doi: 10.1093/database/baq020.
  • Saito, K., I, H., Komai, M., Kotani, H., Kawamura, Y., Nishida, K. M., Siomi, H. & Siomi, M. C. 2010. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 24932498.
  • Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406425.
  • Scadden, A. 2005. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489496.
  • Selenko, P., S, R., Stier, G., Bühler, D., Fischer, U. & Sattler, M. 2001. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 2731.
  • Siomi, M. C., M, T. & Siomi, H. 2010a. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 24, 636646.
  • Siomi, M. C., M, T. & Siomi, H. 2010b. piRNA-mediated silencing in Drosophila germlines. Semin. Cell Dev. Biol. 21, 754759.
  • Steinhauer, W. R. & Kalfayan, L. 1992. A specific ovarian tumor protein isoform is required for efficient differentiation of germ cells in Drosophila oogenesis. Genes Dev. 6, 233243.
  • Sun, Y., G, M., Schwarzer, V., Schoenen, F., Fischer, U. & Wirth, B. 2005. Molecular and functional analysis of intragenic SMN1 mutations in patients with spinal muscular atrophy. Hum. Mutat. 25, 6471.
  • Tanaka, T., H, M., Vagin, V. V., Reuter, M., Hayashi, E., Mochizuki, A. L., Kitamura, K., Yamanaka, H., Kondoh, G., Okawa, K., Kuramochi-Miyagawa, S., Nakano, T., Sachidanandam, R., Hannon, G. J., Pillai, R. S., Nakatsuji, N. & Chuma, S. 2011. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc. Natl Acad. Sci. USA 108, 1057984.
  • Tsuchiya, N., O, M., Nakashima, K., Ubagai, T., Sugimura, T. & Nakagama, H. 2007. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res. 67, 95689576.
  • Van Buskirk, C. & Schüpbach, T. 2002. Half pint regulates alternative splice site selection in Drosophila. Dev. Cell 2, 343353.
  • Vasileva, A., T, D., Firooznia, A., Müller-Reichert, T. & Jessberger, R. 2009. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 19, 630639.
  • Wang, H., M, Y. & Chen, D. 2011. Effective gene silencing in Drosophila ovarian germline by artificial microRNAs. Cell Res. 21, 700703.
  • Wu, M. Y., E, K. & Beaudet, A. L. 2008. Identification of chromatin remodeling genes Arid4a and Arid4b as leukemia suppressor genes. J. Natl Cancer Inst. 100, 12471259.
  • Wu, M. Y., T, T. & Beaudet, A. L. 2006. Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev. 20, 28592870.
  • Yabuta, Y., O, H., Abe, T., Kurimoto, K., Chuma, S. & Saitou, M. 2011. TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J. Cell Biol. 192, 781795.
  • Yang, J., V, T., Hong, J., Bu, T., Yao, Z., Jensen, O. N., Frilander, M. J. & Silvennoinen, O. 2007a. Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Res. 35, 44854494.
  • Yang, L., C, D., Duan, R., Xia, L., Wang, J., Qurashi, A., Jin, P. & Chen, D. 2007b. Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development 134, 42654272.
  • Yang, L., D, R., Chen, D., Wang, J., Chen, D. & Jin, P. 2007c. Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Hum. Mol. Genet. 16, 18141820.
  • Yang, Y., L, Y., Espejo, A., Wu, J., Xu, W., Liang, S. & Bedford, M. T. 2010. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40, 10161023.
  • Yang, Y., X, S., Xia, L., Wang, J., Wen, S., Jin, P. & Chen, D. 2009. The bantam microRNA is associated with drosophila fragile × mental retardation protein and regulates the fate of germline stem cells. PLoS Genet. 5, e1000444.
  • Ying, M., H, X., Zhao, H., Wu, Y., Wan, F., Huang, C. & Jie, K. 2011. Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. PLoS One 6, e23863.
  • Ying, M., Z, Z., Wang, W. & Chen, D. 2009. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 447, 7285.
  • Yoo, B. K., S, P., Gredler, R., Chen, D., Emdad, L., Bhutia, S., Pannell, L., Fisher, P. B. & Sarkar, D. 2011. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53, 15381548.
  • Zamparini, A. L., Davis, M. Y., Malone, C. D., Vieira, E., Zavadil, J., Sachidanandam, R., Hannon, G. J. & Lehmann, R. 2011. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development 138, 403950.
  • Zheng, J., L, J., Liu, H., Li, J. & Chen, K. 2009. Sequence and structural analysis of 4SNc-Tudor domain protein from Takifugu rubripes. Bioinformation 4, 127131.