SEARCH

SEARCH BY CITATION

References

  • Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M. J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J. J., Ju, J., Sheridan, R., Sander, C., Zavolan, M. & Tuschl, T. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203207.
  • Aravin, A. A., Sachidanandam, R., Bourc’his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T. & Hannon, G. J. 2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785799.
  • Aravin, A. A., Hannon, G. J. & Brennecke, J. 2007a. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761764.
  • Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. 2007b. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744747.
  • Aravin, A. A., Van Der Heijden, G. W., Castaneda, J., Vagin, V. V., Hannon, G. J. & Bortvin, A. 2009. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5, e1000764.
  • Berninger, P., Jaskiewicz, L., Khorshid, M. & Zavolan, M. 2011. Conserved generation of short products at piRNA loci. BMC Genomics 12, 46.
  • Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 11111124.
  • Blumenstiel, J. P. & Hartl, D. L. 2005. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc. Natl Acad. Sci. USA 102, 1596515970.
  • Bourc’his, D. & Bestor, T. H. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 9699.
  • Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R. & Hannon, G. J. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 10891103.
  • Brennecke, J., Malone, C. D., Aravin, A. A., Sachidanandam, R., Stark, A. & Hannon, G. J. 2008. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 13871392.
  • Carmell, M. A., Girard, A., van de Kant, H. J., Bourc’his, D., Bestor, T. H., de Rooij, D. G. & Hannon, G. J. 2007. MIWI2 Is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503514.
  • Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. 2002. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 27332742.
  • Chen, C., Nott, T. J., Jin, J. & Pawson, T. 2011. Deciphering arginine methylation: tudor tells the tale. Nat. Rev. Mol. Cell Biol. 12, 629642.
  • Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J. & Frohman, M. A. 2006. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 12551262.
  • Chuma, S., Hiyoshi, M., Yamamoto, A., Hosokawa, M., Takamune, K. & Nakatsuji, N. 2003. Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech. Dev. 120, 979990.
  • Chuma, S., Hosokawa, M., Kitamura, K., Kasai, S., Fujioka, M., Hiyoshi, M., Takamune, K., Noce, T. & Nakatsuji, N 2006. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl Acad. Sci. USA 103, 1589415899.
  • Chuma, S., Hosokawa, M., Tanaka, T. & Nakatsuji, N. 2009. Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol. Cell. Endocrinol. 306, 1723.
  • Chuma, S. & Pillai, R. S. 2009. Retrotransposon silencing by piRNAs: ping-pong players mark their sub-cellular boundaries. PLoS Genet. 5, e1000770.
  • Combes, A. N. & Whitelaw, E. 2010. Epigenetic reprogramming: enforcer or enabler of developmental fate? Dev. Growth Differ. 52, 483491.
  • De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P. N., Enright, A. J. & O’Carroll, D. 2011. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259263.doi: 10.1038/nature10547.
  • Deng, W. & Lin, H. 2002. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819830.
  • Eddy, E. M. 1975. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43, 229280.
  • Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102114.
  • Frank, F., Sonenberg, N. & Nagar, B. 2010. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818822.
  • Frost, R. J., Hamra, F. K., Richardson, J. A., Qi, X., Bassel-Duby, R. & Olson, E. N. 2010. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc. Natl Acad. Sci. USA 107, 1184711852.
  • Ghildiyal, M. & Zamore, P. D. 2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94108.
  • Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. 2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199202.
  • Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B. J., Chiang, H. R., King, N., Degnan, B. M., Rokhsar, D. S. & Bartel, D. P. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 11931197.
  • Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. 2006a. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 17091714.
  • Grivna, S. T., Pyhtila, B. & Lin, H. 2006b. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc. Natl Acad. Sci. USA 103, 1341513420.
  • Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H. & Siomi, M. C. 2007. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 15871590.
  • Haase, A. D., Fenoglio, S., Muerdter, F., Guzzardo, P. M., Czech, B., Pappin, D. J., Chen, C., Gordon, A. & Hannon, G. J. 2010. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev. 24, 24992504.
  • Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J. & Surani, M. A. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 1523.
  • Handel, M. A. & Eppig, J. J. 1998. Sexual dimorphism in the regulation of mammalian meiosis. Curr. Top. Dev. Biol. 37, 333358.
  • Handler, D., Olivieri, D., Novatchkova, M., Gruber, F. S., Meixner, K., Mechtler, K., Stark, A., Sachidanandam, R. & Brennecke, J. 2011. A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30, 39773993.
  • Haraguchi, C. M., Mabuchi, T., Hirata, S., Shoda, T., Hoshi, K., Akasaki, K. & Yokota, S. 2005. Chromatoid bodies: aggresome-like characteristics and degradation sites for organelles of spermiogenic cells. J. Histochem. Cytochem. 53, 455465.
  • Heo, I. & Kim, V. N. 2009. Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139, 2831.
  • Horwich, M. D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P. & Zamore, P. D. 2007. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 12651272.
  • Hosokawa, M., Shoji, M., Kitamura, K., Tanaka, T., Noce, T., Chuma, S. & Nakatsuji, N. 2007. Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev. Biol. 301, 3852.
  • Houwing, S., Kamminga, L. M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D. V., Blasér, H., Raz, E., Moens, C. B., Plasterk, R. H., Hannon, G. J., Draper, B. W. & Ketting, R. F. 2007. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 6982.
  • Huang, H., Gao, Q., Peng, X., Choi, S. Y., Sarma, K., Ren, H., Morris, A. J. & Frohman, M. A. 2011. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376387.
  • Kawaoka, S., Izumi, N., Katsuma, S. & Tomari, Y. 2011. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43, 10151022.
  • Kazazian, H. H. Jr 2004. Mobile elements: drivers of genome evolution. Science 303, 16261632.
  • Kirino, Y., Kim, N., de Planell-Saguer, M., Khandros, E., Chiorean, S., Klein, P. S., Rigoutsos, I., Jongens, T. A. & Mourelatos, Z. 2009. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol. 11, 652658.
  • Kirino, Y. & Mourelatos, Z. 2007a. The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 13, 13971401.
  • Kirino, Y. & Mourelatos, Z. 2007b. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat. Struct. Mol. Biol. 14, 347348.
  • Kirino, Y., Vourekas, A., Kim, N., de Lima Alves, F., Rappsilber, J., Klein, P. S., Jongens, T. A. & Mourelatos, Z. 2010. Arginine methylation of vasa protein is conserved across phyla. J. Biol. Chem. 285, 81488154.
  • Kojima, K., Kuramochi-Miyagawa, S., Chuma, S., Tanaka, T., Nakatsuji, N., Kimura, T. & Nakano, T.. 2009. Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells 14, 11551165.
  • Kotaja, N., Bhattacharyya, S. N., Jaskiewicz, L., Kimmins, S., Parvinen, M., Filipowicz, W. & Sassone-Corsi, P. 2006a. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc. Natl Acad. Sci. USA 103, 26472652.
  • Kotaja, N., Lin, H., Parvinen, M. & Sassone-Corsi, P. 2006b. Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J. Cell Sci. 119, 28192825.
  • Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T. W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., Lin, H., Matsuda, Y. & Nakano, T. 2004. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839849.
  • Kuramochi-Miyagawa, S., Kimura, T., Yomogida, K., Kuroiwa, A., Tadokoro, Y., Fujita, Y., Sato, M., Matsuda, Y. & Nakano, T 2001. Two mouse piwi-related genes: miwi and mili. Mech. Dev. 108, 121133.
  • Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K. et al. 2010. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887892.
  • Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T. W., Hata, K., Li, E., Matsuda, Y., Kimura, T., Okabe, M., Sakaki, Y., Sasaki, H., Nakano, T. 2008. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908917.
  • Lander, E. S., Linton, L. M., Birren, B. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860921.
  • Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P. & Kingston, R. E. 2006. Characterization of the piRNA complex from rat testes. Science 313, 363367.
  • Li, C., Vagin, V. V., Lee, S., Xu, J., Ma, S., Xi, H., Seitz, H., Horwich, M. D., Syrzycka, M., Honda, B. M., Kittler, E. L., Zapp, M. L., Klattenhoff, C., Schulz, N., Theurkauf, W. E., Weng, Z., Zamore, P. D., 2009. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509521.
  • Li, E., Bestor, T. H. & Jaenisch, R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915926.
  • Ma, L., Buchold, G. M., Greenbaum, M. P., Roy, A., Burns, K. H., Zhu, H., Han, D. Y., Harris, R. A., Coarfa, C., Gunaratne, P. H., Yan, W. & Matzuk, M. M. 2009. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 5, e1000635.
  • Malone, C. D., Brennecke, J., Dus, M., Stark, A., McCombie, W. R., Sachidanandam, R. & Hannon, G. J. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522535.
  • Martinez, J. & Tuschl, T. 2004. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975980.
  • Maurer-Stroh, S., Dickens, N. J., Hughes-Davies, L., Kouzarides, T., Eisenhaber, F. & Ponting, C. P. 2003. The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 6974.
  • Mclaren, A. 2003. Primordial germ cells in the mouse. Dev. Biol. 262, 115.
  • Meister, G. & Tuschl, T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343349.
  • Mochizuki, K. & Matsui, Y. 2010. Epigenetic profiles in primordial germ cells: global modulation and fine tuning of the epigenome for acquisition of totipotency. Dev. Growth Differ. 52, 517525.
  • Motamedi, M. R., Verdel, A., Colmenares, S. U., Gerber, S. A., Gygi, S. P. & Moazed, D. 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789802.
  • Nishida, K. M., Saito, K., Mori, T., Kawamura, Y., Nagami-Okada, T., Inagaki, S., Siomi, H. & Siomi, M. C. 2007. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13, 19111922.
  • Olivieri, D., Sykora, M. M., Sachidanandam, R., Mechtler, K. & Brennecke, J. 2010. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 33013317.
  • Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., Fraser, P. 2004. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 10651071.
  • Parker, J. S. & Barford, D. 2006. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31, 622630.
  • Parker, R. & Sheth, U. 2007. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635646.
  • Reuter, M., Chuma, S., Tanaka, T., Franz, T., Stark, A. & Pillai, R. S. 2009. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16, 639646.
  • Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., Funaya, C., Antony, C., Sachidanandam, R. & Pillai, R. S. 2011. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264267. doi: 10.1038/nature10672.
  • Robine, N., Lau, N. C., Balla, S., Jin, Z., Okamura, K., Kuramochi-Miyagawa, S., Blower, M. D., Lai, E. C. 2009. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19, 20662076.
  • Rouget, C., Papin, C., Boureux, A., Meunier, A. C., Franco, B., Robine, N., Lai, E. C., Pelisson, A., Simonelig, M. 2010. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 11281132.
  • Ruby, J. G., Jan, C., Player, C., Axtell, M. J., Lee, W., Nusbaum, C., Ge, H. & Bartel, D. P. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 11931207.
  • Saffman, E. E. & Lasko, P. 1999. Germline development in vertebrates and invertebrates. Cell. Mol. Life Sci. 55, 11411163.
  • Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H. & Siomi, M. C. 2009. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 12961299.
  • Saito, K., Ishizu, H., Komai, M., Kotani, H., Kawamura, Y., Nishida, K. M., Siomi, H. & Siomi, M. C. 2010. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 24932498.
  • Saito, K., Nishida, K. M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H. & Siomi, M. C. 2006. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 22142222.
  • Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H. & Siomi, M. C. 2007. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 16031608.
  • Sashital, D. G. & Doudna, J. A. 2010. Structural insights into RNA interference. Curr. Opin. Struct. Biol. 20, 9097.
  • Schaefer, C. B., Ooi, S. K., Bestor, T. H. & Bourc’his, D. 2007. Epigenetic decisions in mammalian germ cells. Science 316, 398399.
  • Seydoux, G. & Braun, R. E. 2006. Pathway to totipotency: lessons from germ cells. Cell 127, 891904.
  • Shoji, M., Tanaka, T., Hosokawa, M., Reuter, M., Stark, A., Kato, Y., Kondoh, G., Okawa, K., Chujo, T., Suzuki, T., Hata, K., Martin, S. L., Noce, T., Kuramochi-Miyagawa, S., Nakano, T., Sasaki, H., Pillai, R. S., Nakatsuji, N. & Chuma, S.. 2009. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775787.
  • Simon, B., Kirkpatrick, J. P., Eckhardt, S., Reuter, M., Rocha, E. A., Andrade-Navarro, M. A., Sehr, P., Pillai, R. S. & Carlomagno, T. 2011. Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure 19, 172180.
  • Siomi, M. C., Mannen, T. & Siomi, H. 2010. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 24, 636646.
  • Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246258.
  • Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 14341437.
  • Soper, S. F., van der Heijden, G. W., Hardiman, T. C., Goodheart, M., Martin, S. L., de Boer, P. & Bortvin, A. 2008. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev. Cell 15, 285297.
  • Strome, S. & Lehmann, R. 2007. Germ versus soma decisions: lessons from flies and worms. Science 316, 392393.
  • Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison, E. P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R. M. & Hannon, G. J. 2008. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534538.
  • Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M. & Noce, T 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841853.
  • Tanaka, T., Hosokawa, M., Vagin, V. V., Reuter, M., Hayashi, E., Mochizuki, A. L., Kitamura, K., Yamanaka, H., Kondoh, G., Okawa, K., Kuramochi-Miyagawa, S., Nakano, T., Sachidanandam, R., Hannon, G. J., Pillai, R. S., Nakatsuji, N. & Chuma, S. 2011. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc. Natl Acad. Sci. USA 108, 1057910584.
  • Tian, Y., Simanshu, D. K., Ma, J. B. & Patel, D. J. 2011. Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl Acad. Sci. USA 108, 903910.
  • Unhavaithaya, Y., Hao, Y., Beyret, E., Yin, H., Kuramochi-Miyagawa, S., Nakano, T. & Lin, H. 2009. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J. Biol. Chem. 284, 65076519.
  • Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V. & Zamore, P. D. 2006. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320324.
  • Vagin, V. V., Wohlschlegel, J., Qu, J., Jonsson, Z., Huang, X., Chuma, S., Girard, A., Sachidanandam, R., Hannon, G. J. & Aravin, A. A. 2009. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23, 17491762.
  • Vasileva, A., Tiedau, D., Firooznia, A., Muller-Reichert, T. & Jessberger, R. 2009. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 19, 630639.
  • Walsh, C. P., Chaillet, J. R. & Bestor, T. H. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116117.
  • Wang, J., Saxe, J. P., Tanaka, T., Chuma, S. & Lin, H. 2009a. Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr. Biol. 19, 640644.
  • Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T. & Patel, D. J. 2009b. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754761.
  • Wang, Q. E., Han, C., Milum, K. & Wani, A. A. 2011. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res. 708, 5968.
  • Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi-Miyagawa, S., Totoki, Y., Toyoda, A., Hoki, Y., Fujiyama, A., Shibata, T., Sado, T., Noce, T., Nakano, T., Nakatsuji, N., Lin, H. & Sasaki, H. 2011a. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364375.
  • Watanabe, T., Tomizawa, S., Mitsuya, K., Totoki, Y., Yamamoto, Y., Kuramochi-Miyagawa, S., Iida, N., Hoki, Y., Murphy, P. J., Toyoda, A., Gotoh, K., Hiura, H., Arima, T., Fujiyama, A., Sado, T., Shibata, T., Nakano, T., Lin, H., Ichiyanagi, K., Soloway, P. D. & Sasaki, H. 2011b. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848852.
  • Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Minami, N. & Imai, H. 2006. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 17321743.
  • Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M. A., Sakaki, Y. & Sasaki, H. 2008. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539543.
  • Waterston, R. H., Lindblad-Toh, K., Birney, E. Mouse Genome Sequencing Consortium 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520562.
  • Wu, Q., Ma, Q., Shehadeh, L. A., Wilson, A., Xia, L., Yu, H. & Webster, K. A. 2010. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells. Biochem. Biophys. Res. Commun. 396, 915920.
  • Yabuta, Y., Ohta, H., Abe, T., Kurimoto, K., Chuma, S. & Saitou, M. 2011. TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J. Cell Biol. 192, 781795.
  • Yan, Z., Hu, H. Y., Jiang, X., Maierhofer, V., Neb, E., He, L., Hu, Y., Hu, H., Li, N., Chen, W. & Khaitovich, P. 2011. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res. 39, 65966607.
  • Yoshida, S. 2010. Stem cells in mammalian spermatogenesis. Dev. Growth Differ. 52, 311317.
  • Yoshimura, T., Toyoda, S., Kuramochi-Miyagawa, S., Miyazaki, T., Miyazaki, S., Tashiro, F., Yamato, E., Nakano, T. & Miyazaki, J. 2009. Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Dev. Biol. 335, 216227.
  • Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R. & Chen, X 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932935.
  • Zheng, K., Xiol, J., Reuter, M., Eckardt, S., Leu, N. A., McLaughlin, K. J., Stark, A., Sachidanandam, R., Pillai, R. S. & Wang, P. J. 2010. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc. Natl Acad. Sci. USA 107, 1184111846.