SEARCH

SEARCH BY CITATION

References

  • Archer, T. C., Jin, J. & Casey, E. S. 2011. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev. Biol. 350, 429440.
  • Ariizumi, T., Sawamura, K., Uchiyama, H. & Asashima, M. 1991. Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int. J. Dev. Biol. 35, 407414.
  • Brieher, W. M. & Gumbiner, B. M. 1994. Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps. J. Cell Biol. 126, 5192749.
  • Burgess, S., Reim, G., Chen, W., Hopkins, N. & Brand, M. 2002. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129, 905916.
  • Cao, Y., Knöchel, S., Donow, C., Miethe, J., Kaufmann, E. & Knöchel, W. 2004. The POU factor Oct25 regulates the Xvent-2B gene and counteracts terminal differentiation in Xenopus embryos. J. Biol. Chem. 279, 4373543743.
  • Cao, Y., Siegel, D. & Knöchel, W. 2006. Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation. Mech. Dev. 123, 614625.
  • Cao, Y., Siegel, D., Donow, C., Knöchel, S., Yuan, L. & Knöchel, W. 2007. POU-V factors antagonize maternal VegT activity and beta-Catenin signaling in Xenopus embryos. EMBO J. 26, 29422954.
  • Cao, Y., Siegel, D., Oswald, F. & Knöchel, W. 2008. Oct25 represses transcription of nodal/activin target genes by interaction with signal transducers during Xenopus gastrulation. J. Biol. Chem. 283, 3416834177.
  • Chen, X. & Gumbiner, B. M. 2006. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J. Cell Biol. 174, 301313.
  • Cooke, J. & Smith, J. C. 1989. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm. Dev. Biol. 131, 383400.
  • Davidson, L. A. 2008. Integrating morphogenesis with underlying mechanics and cell biology. Curr. Top. Dev. Biol. 81, 113133.
  • Harland, R. M. 1991. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685695.
  • Henig, C., Elias, S. & Frank, D. 1998. A POU protein regulates mesodermal competence to FGF in Xenopus. Mech. Dev. 71, 131142.
  • Hinkley, C. S., Martin, J. F., Leibham, D. & Perry, M. 1992. Sequential expression of multiple POU proteins during amphibian early development. Mol. Cell. Biol. 12, 638649.
  • Hopwood, N. D., Pluck, A. & Gurdon, J. B. 1989. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J. 8, 34093417.
  • Hudson, C., Clements, D., Friday, R. V., Stott, D. & Woodland, H. R. 1997. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91, 397405.
  • Ibrahim, H.. 2002. Funktion und Regulation des Transkriptionsfaktors Xsna Während der Embryonalentwicklung von Xenopus Laevis. Cologne: Dissertation University of Cologne.
  • Jansen, H. J., Wacker, S. A., Bardine, N. & Durston, A. J. 2007. The role of the Spemann organizer in anterior-posterior patterning of the trunk. Mech. Dev. 124, 668681.
  • Jonas, E. A., Snape, A. M. & Sargent, T. D. 1989. Transcriptional regulation of a Xenopus embryonic epidermal keratin gene. Development 106, 399405.
  • Kao, K. R. & Elinson, R. P. 1988. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 6477.
  • Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., McLaughlin, K. J., Scholer, H. R. & Tomilin, A. 2004. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 10781083.
  • Keller, R. E. 1978. Timelapse Cinemicrographic Analysis of Superficial Cells Behavior during and prior to Gastrulation in Xenopus laevis. J. Morphol. 157, 223248.
  • Keller, R. E. 1980. The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60, 2013417.
  • Keller, R. E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216, 81101.
  • Keller, R. E., Danilchik, M., Gimlich, R. & Shih, J. 1985a. Convergent extension by cell intercalation during gastrulation of Xenopus laevis. In: Molecular Determinants of Animal Form. (ed. Edelman GM) New York: Alan R. Liss, Inc., pp. 111141.
  • Keller, R. E., Danilchik, M., Gimlich, R. & Shih, J. 1985b. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89 (Suppl.), 185209.
  • Keller, R. & Danilchik, M. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193209.
  • Keller, R., Davidson, L. A. & Shook, D. R. 2003. How we are shaped: the biomechanics of gastrulation. Differentiation 71, 171205.
  • Kim, S. H., Yamamoto, A., Bouwmeester, T., Agius, E. & Robertis, E. M. 1998. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125, 46814690.
  • Köster, I., Jungwirth, M. S. & Steinbeisser, H. 2010. xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation. Dev. Biol. 344, 2635.
  • Kuroda, H., Inui, M., Sugimoto, K., Hayata, T. & Asashima, M. 2002. Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev. Biol. 244, 267277.
  • Lachnit, M., Kur, E. & Driever, W. 2008. Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev. Biol. 315, 117.
  • Lewis, W. 1947. Mechanics of invagination. Anat. Rec. 97, 139165.
  • Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A. A., Ko, M. S. & Niwa, H. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625635.
  • Medina, A., Swain, R. K., Kuerner, K. M. & Steinbeisser, H. 2004. Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J. 23, 32493258.
  • Morrison, G. M. & Brickman, J. M. 2006. Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development 133, 20112022.
  • Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H. & Smith, A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 37, 9391.
  • Nieuwkoop, P. D. & Faber, J.. 1956. Normal Table of Xenopus Laevis (Daudin). Amsterdam: North-Holland Publishing Company.
  • Niwa, H., Miyazaki, J. & Smith, A. G. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372376.
  • Niwa, H. 2007. How is pluripotency determined and maintained? Development 134, 635646.
  • Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. 2009. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118122.
  • Pesce, M. & Schöler, H. R. 2001. Oct4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271278.
  • Rhumbler, L. 1902. Zur Mechanik des Gastrulationsvorganges, insbesondere der Invagination. Eine entwicklungsmechanische Studie. Roux's Arch. Entw. Mech. Org. 14, 401476.
  • Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. & De Robertis, E. M. 1994. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779790.
  • Shih, J. & Keller, R. 1994. Gastrulation in Xenopus laevis: involution - a current view. Semin. Dev. Biol. 5, 8590.
  • Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. 1991. Expression of a Xenopus homolog of Brachyury (T) is an immediate- early response to mesoderm induction. Cell 67, 7987.
  • Snir, M., Ofir, R., Elias, S. & Frank, D. 2006. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. EMBO J. 25, 36643674.
  • Takebayashi-Suzuki, K., Arita, N., Murasaki, E. & Suzuki, A. 2007. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction. Mech. Dev. 124, 840855.
  • Unterseher, F., Hefele, J. A., Giehl, K., De Robertis, E. M., Wedlich, D. & Schambony, A. 2004. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J. 23, 32593269.
  • van den Eijnden-Van Raaij, A. J., van Zoelent, E. J., van Nimmen, K., Koster, C. H., Snoek, G. T., Durston, A. J. & Huylebroeck, D. 1990. Activin-like factor from a Xenopus laevis cell line responsible for mesoderm induction. Nature 345, 732734.
  • Vogt, W. 1929. Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung, Teil II. Roux's Arch. Entw. Mech. Org. 120, 384706.
  • Wacker, S., Grimm, K., Joos, T. & Winklbauer, R. 2000. Development and control of tissue separation at gastrulation in Xenopus. Dev. Biol. 224, 428439.
  • Wacker, S. A., Jansen, H. J., McNulty, C., Houtzager, E. & Durston, A. J. 2004. Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser generate positional information during vertebrate gastrulation. Dev. Biol. 268, 207219.
  • Wacker, S. A., Oswald, F., Wiedenmann, J. & Knöchel, W. 2007. A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev. Dyn. 236, 473480.
  • Wang, Y., Janicki, P., Köster, I., Berger, C. D., Wenzl, C., Grosshans, J. & Steinbeisser, H. 2008. Xenopus Paraxial Protocadherin regulates morphogenesis by antagonizing Sprouty. Genes Dev. 22, 878883.
  • Whitfield, T., Heasman, J. & Wylie, C. 1993. XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula. Dev. Biol. 155, 361370.
  • Whitfield, T. T., Heasman, J. & Wylie, C. C. 1995. Early embryonic expression of XLPOU-60, a Xenopus POU-domain protein. Dev. Biol. 169, 759769.
  • Winklbauer, R. 1990. Mesodermal cell migration during Xenopus gastrulation. Dev. Biol. 142, 155168.
  • Winklbauer, R. & Keller, R. E. 1996. Fibronectin, mesoderm migration, and gastrulation in Xenopus. Dev. Biol. 177, 413426.
  • Winklbauer, R. & Schürfeld, M. 1999. Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126, 37033713.
  • Winklbauer, R., Medina, A., Swain, R. K. & Steinbeisser, H. 2001. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856860.
  • Winklbauer, R. 2009. Cell adhesion in amphibian gastrulation. Int. Rev. Cell. Mol. Biol. 278, 215275.
  • Zhong, Y., Brieher, W. M. & Gumbiner, B. M. 1999. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351359.