What controls the lateral variation of large earthquake occurrence along the Japan Trench?



Abstract The lateral (along trench axis) variation in the mode of large earthquake occurrence near the northern Japan Trench is explained by the variation in surface roughness of the subducting plate. The surface roughness of the ocean bottom near the trench is well correlated with the large-earthquake occurrence. The region where the ocean bottom is smooth is correlated with‘typical’large underthrust earthquakes (e.g. the 1968 Tokachioki event) in the deeper part of the seismogenic plate interface, and there are no earthquakes in the shallow part (aseismic zone). The region where the ocean bottom is rough (well-developed horst and graben structure) is correlated with large normal faulting earthquakes (e.g. the 1933 Sanriku event) in the outer-rise region, and large tsunami earthquakes (e.g. the 1896 Sanriku event) in the shallow region of the plate interface zone. In the smooth surface region, the coherent metamorphosed sediments form a homogeneous, large and strong contact zone between the plates. The rupture of this large strong contact causes great under-thrust earthquakes. In the rough surface region, large outer-rise earthquakes enhance the well-developed horst and grabens. As these structure are subducted with sediments in the graben part, the horsts create enough contact with the overriding block to cause an earthquake in the shallow part of the interface zone, and this earthquake is likely to be a tsunami earthquake. When the horst and graben structure is further subducted, many small strong contacts between the plates are formed, and they can cause only small underthrust earthquakes.