Texture and petrology of modern river, beach and shelf sands in a volcanic back-arc setting, northeastern Japan

Authors


Abstract

Abstract  The focus in the present study is on characterizing spatial patterns of textural and petrological variabilities, and on evaluating mechanisms influencing the textural and petrological components of modern river, beach and shelf sands in a volcanically active back-arc tectonic setting. Abashiri Bay and the surrounding area in eastern Hokkaido, Japan, has volcanic source land within a back-arc region associated with subduction of the Pacific Plate beneath the Okhotsk (North American) Plate. A total of 41 river, beach and shelf sands were obtained for grain-size and modal composition analyses. Multivariate analytical techniques of hierarchical cluster and principal component analyses were performed on the textural and petrological data for investigating relations among quantitative variables. On the basis of grain-size data, four sedimentary zones were identified: zone I, palimpsest zone; zone II, relict zone; zone III, modern (proteric) zone; zone IV, coastal sedimentary zone. All sands are feldspatholithic and quartz-deficient. The framework (quartz, feldspar and rock fragment) modal compositions were also classified into four clusters, A–D. The characteristic components of each cluster are as follows: cluster A, felsic volcanic rock fragments; cluster B, andesitic–basaltic volcanic rock fragments; cluster C, mixed or plagioclase; cluster D, sedimentary rock fragments. Almost all sands in western and central Abashiri Bay belong to cluster A, where the original compositions are influenced by Kutcharo pyroclastic flow deposits. Andesitic–basaltic lava and Neogene volcaniclastic and sedimentary rocks have a major influence on the compositions of shelf sands in eastern Abashiri Bay. The modal compositions are basically controlled by the source lithology. Compositional maturity (percentage of quartz to feldspar and rock fragments; Q/FR%) slightly increased, in order, from river (1.2), zone IV (coastal, 1.7), zone II (relict, 2.2), zone I (palimpsest, 3.6), to zone III (modern proteric, 7.0). Greater maturity in the recycled sediments is indicative of weathering under the sea or abrasion by transportation induced by sea-level fluctuations, waves, or sea currents. Several controlling factors – (i) source lithological; (ii) mineralogical; (iii) climatic; and (iv) geomorphological controls – might still cause low maturity through all sedimentary zones other than the continental margin sands previously reported.

Ancillary