• 1
    Mendel CM. The free hormone hypothesis: A physiological based mathematical model. Endocr. Rev. 1989; 10: 23274.
  • 2
    Willnow TE, Nykjaer A, Herz J. Lipoprotein receptors: New roles for ancient proteins. Nat. Cell Biol. 1999; 1: E15762.
  • 3
    Willnow TE, Nykjaer A. Pathways for kidney-specific uptake of the steroid hormone 25-hydroxyvitamin D3. Curr. Opin. Lipidol. 2002; 13: 25560.
  • 4
    Christensen EI, Birn H, Verroust P, Moestrup SK. Membrane receptors for endocytosis in the renal proximal tubule. Int. Rev. Cytol. 1998; 180: 23784.
  • 5
    Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl. Acad. Sci. USA 1982; 79: 555761.
  • 6
    Christensen EI, Gliemann J, Moestrup SK. Renal tubule gp330 is a calcium binding receptor for endocytic uptake of protein. J. Histochem. Cytochem. 1992; 40: 148190.
  • 7
    Kounnas MZ, Argreaves WS, Strickland DK. The 39 kDa receptor associated protein interacts with two members of the low density lipoprotein receptor family, alfa2-macroglobulin receptor and glycoprotein 330. J. Biol. Chem. 1992; 267: 2617280.
  • 8
    Howell BW, Herz J. The LDL receptor gene family: Signaling functions during development. Curr. Opin. Neurobiol. 2001; 11: 748.
  • 9
    Saito A, Pietromonaco S, Loo AK, Farquar MG. Complete cloning and sequencing of the rat gp330/‘megalin’, a distinctive member of the low density lipoprotein receptor gene family. Proc. Natl. Acad. Sci. USA 1994; 91: 97259.
  • 10
    Hjalm G, Murria E, Crumley G et al. Cloning and sequencing of human gp330, a Ca2+-binding receptor with potential intracellular signaling properties. Eur. J. Biochem. 1996; 239: 1327.
  • 11
    Krieger M, Herz J. Structure and functions of multiligand lipoprotein receptors: Macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 1994; 63: 60137.
  • 12
    Davis CG, Goldstein JL, Sudhof TC, Anderson DW, Brown MS. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 1987; 326: 76065.
  • 13
    Chen WJ, Gldstein JL, Brown MS. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low-density lipoprotein receptor. J. Biol. Chem. 1990; 265: 311623.
  • 14
    Takeda T, Yamazaki H, Farquhar MG. Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am. J. Physiol. Cell Physiol. 2003; 284: C110513.
  • 15
    Lundgren S, Carling T, Hjalm G et al. Tissue distribution of human gp330/megalin, a putative Ca2+ sensing protein. J. Histochem. Cytochem. 1997; 45: 38392.
  • 16
    Christensen EI, Nielsen S, Moestrup SK et al. Segmental distribution of endocytosis receptor gp330 in renal proximal tubules. Eur. J. Cell Biol. 1995; 66: 34964.
  • 17
    Christensen EI, Birn H. Megalin and cubilin: Multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 2002; 3: 25666.
  • 18
    Birn H, Verroust PJ, Nexo E et al. Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J. Biol. Chem. 1997; 272: 26497504.
  • 19
    Moestrup SK, Kozyraki R, Kristiansen M et al. The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J. Biol. Chem. 1999; 273: 523542.
  • 20
    Seetharam B, Christensen EI, Moestrup SK, Hammond TG, Verroust PJ. Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J. Clin. Invest. 1997; 99: 231722.
  • 21
    Aminoff M, Carter JE, Chadwick RB et al. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat. Genet. 1999; 21: 30913.
  • 22
    Fyfe JC, Giger U, Hall CA et al. Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs. Pediatr. Res. 1991; 29: 2431.
  • 23
    He Q, Madsen M, Kilkenney A et al. Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood 2005; 106: 144753.
  • 24
    Holick MF. Calcium and vitamin D. Diagnostics and therapeutics. Clin. Lab. Med. 2000; 20: 56990.
  • 25
    White P, Cooke N. The multifunctional properties and characteristics of vitamin d-binding protein. Trends Endocrinol. Metab. 2000; 11: 32027.
  • 26
    Haddad JG. Plasma vitamin d-binding protein (Cc-globulin): Multiple tasks. J. Steroid Biochem. 1995; 53: 16.
  • 27
    Safadi FF, Thornton P, Magiera H et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J. Clin. Invest. 1999; 103: 23951.
  • 28
    Nykjaer A, Dragun D, Walther D et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96: 50715.
  • 29
    Willnow TE, Hilpert J, Armstrong SA et al. Defective forebrain development in mice lacking gp330/megalin. Proc. Natl. Acad. Sci. USA 1996; 93: 846064.
  • 30
    Leheste JR, Rolinski B, Vorum H et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am. J. Pathol. 1999; 155: 136170.
  • 31
    Muller D, Ankermann T, Stephani U et al. Holoprosencephaly and low molecular weight proteinuria: The human homologue of murine megalin deficiency. Am. J. Kidney Dis. 2001; 37: 6248.
  • 32
    Leheste JR, Melsen F, Wellner M et al. Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J. 2003; 17: 2479.
  • 33
    Nagai J, Tanaka H, Nakanishi N, Murakami T, Takano M. Role of megalin in renal handling of aminoglycosides. Am. J. Physiol. Renal Physiol. 2001; 281: F337F344.
  • 34
    Bim H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI. Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules. J. Am. Soc. Nephrol. 2000; 11: 191202.
  • 35
    Willnow TE, Rohlmann A, Horton J et al. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J. 1996; 15: 26329.
  • 36
    Burmeister R, Boe IM, Nykjaer A et al. A two-receptor pathway for catabolism of Clara cell secretory protein in the kidney. J. Biol. Chem. 2001; 276: 13295301.
  • 37
    Nykjaer A, Fyfe JC, Kozyraki R et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25 (OH) vitamin D (3). Proc. Natl. Acad. Sci. USA 2001; 98: 13895900.
  • 38
    Teranishi H, Kasuya M, Aoshima K, Kato T, Migita S. Demonstration of vitamin d-binding protein (Gc-globulin) in the urine of Itai-itai disease patients. Toxicol. Lett. 1983; 15: 712.
  • 39
    Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV. Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum. Mol. Genet. 1993; 2: 212934.
  • 40
    Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ. ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl. Acad. Sci. USA 1998; 95: 807580.
  • 41
    Yamamoto K, Cox JP, Friedrich T et al. Characterization of renal chloride channel (CLCN5) mutations in Dent’s disease. J. Am. Soc. Nephrol. 2000; 11: 146068.
  • 42
    Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ. ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 2000; 408: 36973.
  • 43
    Christensen EI, Devuyst O, Dom G et al. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc. Natl. Acad. Sci. USA 2003; 100: 84727.
  • 44
    Hryciw DH, Ekberg J, Pollock CA, Poronnik P. ClC-5: A chloride channel with multiple roles in renal tubular albumin uptake. Int. J. Biochem. Cell Biol. 2006; 38: 103642.
  • 45
    Norden AG, Lapsley M, Igarashi T et al. Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J. Am. Soc. Nephrol. 2002; 13: 12533.
  • 46
    Loi M. Lowe syndrome. Orphanet. J. Rare Dis. 2006; 1: 16.
  • 47
    Dressman MA, Olivos-Glander IM, Nussbaum RL, Suchy SF. Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J. Histochem. Cytochem. 2000; 48: 17990.