SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    D'Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin. Nephrol. 2004; 24: 17996.
  • 2
    Barratt J, Feehally J. IgA nephropathy. J. Am. Soc. Nephrol. 2005; 16: 208897.
  • 3
    Barratt J, Feehally J, Smith AC. Pathogenesis of IgA nephropathy. Semin. Nephrol. 2004; 24: 197217.
  • 4
    Coppo R, Amore A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int. 2004; 65: 15447.
  • 5
    Kerr MA. The structure and function of human IgA. Biochem. J. 1990; 271: 28596.
  • 6
    Gregory RL. The biological role and clinical implications of IgA. Lab. Med. 1994; 25: 7248.
  • 7
    Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006; 126: 85567.
  • 8
    Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The Impact of Glycosylation on the Biological Function and Structure of Human Immunoglobulins. Annu. Rev. Immunol. 2006.
  • 9
    Tarelli E, Smith AC, Hendry BM, Challacombe SJ, Pouria S. Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydr. Res. 2004; 339: 232935.
  • 10
    Iwasaki H, Zhang Y, Tachibana K et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 2. J. Biol. Chem. 2003; 278: 561321.
  • 11
    Ju T, Brewer K, D'Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem. 2002; 277: 17886.
  • 12
    Kudo T, Iwai T, Kubota T et al. Molecular cloning and characterization of a novel UDP-Gal:GalNAc(alpha) peptide beta 1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J. Biol. Chem. 2002; 277: 4772431.
  • 13
    Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl Acad. Sci. USA 2002; 99: 1661318.
  • 14
    Ju T, Cummings RD. Protein glycosylation: Chaperone mutation in Tn syndrome. Nature 2005; 437: 1252.
  • 15
    Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family. Biochimie 2001; 83: 72737.
  • 16
    Hiki Y, Tanaka A, Kokubo T et al. Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix- assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Nephrol. 1998; 9: 57782.
  • 17
    Chintalacharuvu SR, Emancipator SN. The glycosylation of IgA produced by murine B cells is altered by Th2 cytokines. J. Immunol. 1997; 159: 232733.
  • 18
    Kobayashi I, Nogaki F, Kusano H et al. Interleukin-12 alters the physicochemical characteristics of serum and glomerular IgA and modifies glycosylation in a ddY mouse strain having high IgA levels. Nephrol. Dial. Transplant. 2002; 17: 210816.
  • 19
    Royle L, Roos A, Harvey DJ et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 2003; 278: 2014053.
  • 20
    Smith AC, Molyneux K, Feehally J, Barratt J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 2006; 17: 352028.
  • 21
    Allen AC, Harper SJ, Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin. Exp. Immunol. 1995; 100: 47074.
  • 22
    Andre PM, Le Pogamp P, Chevet D. Impairment of jacalin binding to serum IgA in IgA nephropathy. J. Clin. Lab. Anal. 1990; 4: 11519.
  • 23
    Coppo R, Amore A, Gianoglio B et al. Serum IgA and macromolecular IgA reacting with mesangial matrix components. Contrib. Nephrol. 1993; 104: 16271.
  • 24
    Hiki Y, Iwase H, Saitoh M et al. Reactivity of glomerular and serum IgA1 to jacalin in IgA nephropathy. Nephron 1996; 72: 42935.
  • 25
    Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib. Nephrol. 1993; 104: 17282.
  • 26
    Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997; 52: 50916.
  • 27
    Horie A, Hiki Y, Odani H et al. IgA1 molecules produced by tonsillar lymphocytes are under-O-glycosylated in IgA nephropathy. Am. J. Kidney Dis. 2003; 42: 48696.
  • 28
    Odani H, Hiki Y, Takahashi M et al. Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem. Biophys. Res. Commun. 2000; 271: 26874.
  • 29
    Renfrow MB, Cooper HJ, Tomana M et al. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. J. Biol. Chem. 2005; 280: 1913645.
  • 30
    Yasuda Y, Horie A, Odani H, Iwase H, Hiki Y. Application of mass spectrometry to IgA nephropathy: Structural and biological analyses of underglycosylated IgA1 molecules. Contrib. Nephrol. 2004; 141: 17088.
  • 31
    Hiki Y, Odani H, Takahashi M et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001; 59: 107785.
  • 32
    Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J. Am. Soc. Nephrol. 1999; 10: 176371.
  • 33
    Hiki Y, Iwase H, Kokubo T et al. Association of asialo-galactosyl beta 1–3N-acetylgalactosamine on the hinge with a conformational instability of Jacalin-reactive immunoglobulin A1 in immunoglobulin A nephropathy. J. Am. Soc. Nephrol. 1996; 7: 95560.
  • 34
    Iwase H, Ishii-Karakasa I, Fujii E, Hotta K, Hiki Y, Kobayashi Y. Analysis of glycoform of O-glycan from human myeloma immunoglobulin A1 by gas-phase hydrazinolysis following pyridylamination of oligosaccharides. Anal Biochem. 1992; 206: 2025.
  • 35
    Allen AC. Methodological approaches to the analysis of IgA1 O-glycosylation in IgA nephropathy. J. Nephrol. 1999; 12: 7684.
  • 36
    Moore JS, Kulhavy R, Tomana M et al. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol. Immunol. 2007; 44: 25982604.
  • 37
    Leung JC, Poon PY, Lai KN. Increased sialylation of polymeric immunoglobulin A1: Mechanism of selective glomerular deposition in immunoglobulin A nephropathy? J. Lab. Clin. Med. 1999; 133: 15260.
  • 38
    Amore A, Cirina P, Conti G, Brusa P, Peruzzi L, Coppo R. Glycosylation of circulating iga in patients with iga nephropathy modulates proliferation and apoptosis of mesangial cells. J. Am. Soc. Nephrol. 2001; 12: 186271.
  • 39
    Hashim OH, Shuib AS, Chua CT. The interaction of selective plant lectins with neuraminidase-treated and untreated IgA1 from the sera of IgA nephropathy patients. Immunol. Invest. 2001; 30: 2131.
  • 40
    Leung JC, Tang SC, Chan DT, Lui SL, Lai KN. Increased sialylation of polymeric lambda-IgA1 in patients with IgA nephropathy. J. Clin. Lab. Anal 2002; 16: 1119.
  • 41
    Xu LX, Zhao MH. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 2005; 68: 16772.
  • 42
    Iwase H, Katsumata T, Itoh A et al. Detection of enriched Thomsen-Friedenrich antigen on IgA1 from IgA nephropathy patients. J. Nephrol. 2002; 15: 7038.
  • 43
    Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: Observations in three patients. Kidney Int. 2001; 60: 96973.
  • 44
    Itoh A, Iwase H, Takatani T et al. Tonsillar IgA1 as a possible source of hypoglycosylated IgA1 in the serum of IgA nephropathy patients. Nephrol. Dial. Transplant. 2003; 18: 110814.
  • 45
    Matousovic K, Novak J, Yanagihara T et al. IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrol. Dial. Transplant. 2006; 21: 247884.
  • 46
    Kokubo T, Hiki Y, Iwase H et al. Evidence for involvement of IgA1 hinge glycopeptide in the IgA1–IgA1 interaction in IgA nephropathy. J. Am. Soc. Nephrol. 1997; 8: 91519.
  • 47
    Hiki Y, Saitoh M, Kobayashi Y. Serum IgA class anti-IgA antibody in IgA nephropathy. Nephron 1991; 59: 55260.
  • 48
    Kokubo T, Hiki Y, Iwase H et al. Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J. Am. Soc. Nephrol. 1998; 9: 204854.
  • 49
    Yan Y, Xu LX, Zhang JJ, Zhang Y, Zhao MH. Self-aggregated deglycosylated IgA1 with or without IgG were associated with the development of IgA nephropathy. Clin. Exp. Immunol. 2006; 144: 1724.
  • 50
    Iwase H, Tanaka A, Hiki Y et al. Aggregated human serum immunoglobulin A1 induced by neuraminidase treatment had a lower number of O-linked sugar chains on the hinge portion. J. Chromatogr. B Biomed. Sci. Appl. 1999; 724: 17.
  • 51
    Takatani T, Iwase H, Itoh A et al. Compositional similarity between immunoglobulins binding to asialo-, agalacto-IgA1-Sepharose and those deposited in glomeruli in IgA nephropathy. J. Nephrol. 2004; 17: 67986.
  • 52
    Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest. 1999; 104: 7381.
  • 53
    Iwase H, Yokozeki Y, Hiki Y et al. Human serum immunoglobulin G3 subclass bound preferentially to asialo-, agalactoimmunoglobulin A1/Sepharose. Biochem. Biophys. Res. Commun 1999; 264: 4249.
  • 54
    Nakamura I, Iwase H, Arai K et al. Detection of gender difference and epitope specificity of IgG antibody activity against IgA1 hinge portion in IgA nephropathy patients by using synthetic hinge peptide and glycopeptide probes. Nephrology (Carlton) 2004; 9: 2630.
  • 55
    Kokubo T, Hashizume K, Iwase H et al. Humoral immunity against the proline-rich peptide epitope of the IgA1 hinge region in IgA nephropathy. Nephrol. Dial. Transplant. 2000; 15: 2833.
  • 56
    Van Der Boog PJ, Van Kooten C, De Fijter JW, Daha MR. Role of macromolecular IgA in IgA nephropathy. Kidney Int. 2005; 67: 81321.
  • 57
    Sano T, Hiki Y, Kokubo T, Iwase H, Shigematsu H, Kobayashi Y. Enzymatically deglycosylated human IgA1 molecules accumulate and induce inflammatory cell reaction in rat glomeruli. Nephrol. Dial. Transplant. 2002; 17: 5056.
  • 58
    Oida E, Nogaki F, Kobayashi I et al. Quantitative trait loci (QTL) analysis reveals a close linkage between the hinge region and trimeric IgA dominancy in a high IgA strain (HIGA) of ddY mice. Eur. J. Immunol. 2004; 34: 2200208.
  • 59
    Hiki Y, Kokubo T, Iwase H et al. Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J. Am. Soc. Nephrol. 1999; 10: 76069.
  • 60
    Coppo R, Amore A, Gianoglio B et al. Macromolecular IgA and abnormal IgA reactivity in sera from children with IgA nephropathy. Italian Collaborative Paediatric IgA Nephropathy Study. Clin. Nephrol. 1995; 43: 113.
  • 61
    Chen A, Chen WP, Sheu LF, Lin CY. Pathogenesis of IgA nephropathy: In vitro activation of human mesangial cells by IgA immune complex leads to cytokine secretion. J. Pathol. 1994; 173: 11926.
  • 62
    Gomez-Guerrero C, Lopez-Armada MJ, Gonzalez E, Egido J. Soluble IgA and IgG aggregates are catabolized by cultured rat mesangial cells and induce production of TNF-alpha and IL-6, and proliferation. J. Immunol. 1994; 153: 524755.
  • 63
    Lopez-Armada MJ, Gomez-Guerrero C, Egido J. Receptors for immune complexes activate gene expression and synthesis of matrix proteins in cultured rat and human mesangial cells: Role of TGF-beta. J. Immunol. 1996; 157: 213642.
  • 64
    Van Den Dobbelsteen ME, Van Der Woude FJ, Schroeijers WE, Van Den Wall Bake AW, Van Es LA, Daha MR. Binding of dimeric and polymeric IgA to rat renal mesangial cells enhances the release of interleukin 6. Kidney Int. 1994; 46: 51219.
  • 65
    Oortwijn BD, Roos A, Royle L et al. Differential glycosylation of polymeric and monomeric IgA: A possible role in glomerular inflammation in IgA nephropathy. J. Am. Soc. Nephrol. 2006; 17: 352939.
  • 66
    Wang Y, Zhao MH, Zhang YK, Li XM, Wang HY. Binding capacity and pathophysiological effects of IgA1 from patients with IgA nephropathy on human glomerular mesangial cells. Clin. Exp. Immunol. 2004; 136: 16875.
  • 67
    Leung JC, Tang SC, Chan LY, Tsang AW, Lan HY, Lai KN. Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrol. Dial. Transplant. 2003; 18: 3645.
  • 68
    Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int. 2002; 62: 46575.
  • 69
    Moura IC, Arcos-Fajardo M, Sadaka C et al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J. Am. Soc. Nephrol. 2004; 15: 62234.
  • 70
    Zhang JJ, Xu LX, Zhang Y, Zhao MH. Binding capacity of in vitro deglycosylated IgA1 to human mesangial cells. Clin. Immunol. 2006; 119: 1039.
  • 71
    Novak J, Tomana M, Matousovic K et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 2005; 67: 50413.
  • 72
    Amore A, Conti G, Cirina P et al. Aberrantly glycosylated IgA molecules downregulate the synthesis and secretion of vascular endothelial growth factor in human mesangial cells. Am. J. Kidney Dis. 2000; 36: 124252.
  • 73
    Peruzzi L, Amore A, Cirina P et al. Integrin expression and IgA nephropathy: In vitro modulation by IgA with altered glycosylation and macromolecular IgA. Kidney Int. 2000; 58: 233140.
  • 74
    Roos A, Bouwman LH, Van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 2001; 167: 28618.
  • 75
    Hiemstra PS, Biewenga J, Gorter A et al. Activation of complement by human serum IgA, secretory IgA and IgA1 fragments. Mol. Immunol. 1988; 25: 52733.
  • 76
    Zhang W, Lachmann PJ. Glycosylation of IgA is required for optimal activation of the alternative complement pathway by immune complexes. Immunology 1994; 81: 13741.
  • 77
    Czerkinsky C, Koopman WJ, Jackson S et al. Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J. Clin. Invest. 1986; 77: 193138.
  • 78
    Nakamura I, Iwase H, Ohba Y, Hiki Y, Katsumata T, Kobayashi Y. Quantitative analysis of IgA1 binding protein prepared from human serum by hypoglycosylated IgA1/Sepharose affinity chromatography. J. Chromatogr. B Anal Technol. Biomed. Life Sci. 2002; 776: 1016.
  • 79
    Xu LX, Yan Y, Zhang JJ, Zhang Y, Zhao MH. The glycans deficiencies of macromolecular IgA1 is a contributory factor of variable pathological phenotypes of IgA nephropathy. Clin. Exp. Immunol. 2005; 142: 56975.
  • 80
    Linossier MT, Palle S, Berthoux F. Different glycosylation profile of serum IgA1 in IgA nephropathy according to the glomerular basement membrane thickness: Normal versus thin. Am. J. Kidney Dis. 2003; 41: 55864.
  • 81
    Baharaki D, Dueymes M, Perrichot R et al. Aberrant glycosylation of IgA from patients with IgA nephropathy. Glycoconj J. 1996; 13: 50511.
  • 82
    Nishie T, Miyaishi O, Azuma H et al. Development of Immunoglobulin A Nephropathy- Like Disease in {beta}-1,4-Galactosyltransferase-I-Deficient Mice. Am. J. Pathol. 2007; 170: 44756.
  • 83
    Smith AC, De Wolff JF, Molyneux K, Feehally J, Barratt J. O-glycosylation of serum IgD in IgA nephropathy. J. Am. Soc. Nephrol. 2006; 17: 11929.
  • 84
    Mellis SJ, Baenziger JU. Structures of the O-glycosidically linked oligosaccharides of human IgD. J. Biol. Chem. 1983; 258: 1155763.
  • 85
    Putnam FW, Liu YS, Low TL. Primary structure of a human IgA1 immunoglobulin. IV. Streptococcal IgA1 protease, digestion, Fab and Fc fragments, and the complete amino acid sequence of the alpha 1 heavy chain. J. Biol. Chem. 1979; 254: 286574.
  • 86
    Takahashi N, Tetaert D, Debuire B, Lin LC, Putnam FW. Complete amino acid sequence of the delta heavy chain of human immunoglobulin D. Proc. Natl Acad. Sci. USA 1982; 79: 285054.
  • 87
    Preud'homme JL, Petit I, Barra A, Morel F, Lecron JC, Lelievre E. Structural and functional properties of membrane and secreted IgD. Mol. Immunol. 2000; 37: 87187.
  • 88
    Kerr WG, Hendershot LM, Burrows PD. Regulation of IgM and IgD expression in human B-lineage cells. J. Immunol. 1991; 146: 331421.
  • 89
    Nicholson IC, Brisco MJ, Zola H. Memory B lymphocytes in human tonsil do not express surface IgD. J. Immunol. 1995; 154: 110513.
  • 90
    Greer MR, Barratt J, Harper SJ, Allen AC, Feehally J. The nucleotide sequence of the IgA1 hinge region in IgA nephropathy. Nephrol. Dial. Transplant. 1998; 13: 198083.
  • 91
    Barratt J, Bailey EM, Buck KS et al. Exaggerated systemic antibody response to mucosal Helicobacter pylori infection in IgA nephropathy. Am. J. Kidney Dis. 1999; 33: 104957.
  • 92
    Layward L, Finnemore AM, Allen AC, Harper SJ, Feehally J. Systemic and mucosal IgA responses to systemic antigen challenge in IgA nephropathy. Clin. Immunol. Immunopathol. 1993; 69: 30613.
  • 93
    Leinikki PO, Mustonen J, Pasternack A. Immune response to oral polio vaccine in patients with IgA glomerulonephritis. Clin. Exp. Immunol. 1987; 68: 338.
  • 94
    Ots M, Uibo O, Metskula K, Uibo R, Salupere V. IgA-antigliadin antibodies in patients with IgA nephropathy: The secondary phenomenon? Am. J. Nephrol. 1999; 19: 4538.
  • 95
    Layward L, Allen AC, Hattersley JM, Harper SJ, Feehally J. Low antibody affinity restricted to the IgA isotype in IgA nephropathy. Clin. Exp. Immunol. 1994; 95: 3541.
  • 96
    Layward L, Allen AC, Harper SJ, Hattersley JM, Feehally J. Increased and prolonged production of specific polymeric IgA after systemic immunization with tetanus toxoid in IgA nephropathy. Clin. Exp. Immunol. 1992; 88: 3948.
  • 97
    Lamm ME. The IgA mucosal immune system. Am. J. Kidney Dis 1988; 12: 3847.
  • 98
    Harper SJ, Pringle JH, Wicks AC et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 1994; 45: 83644.
  • 99
    Westberg NG, Baklien K, Schmekel B, Gillberg R, Brandtzaeg P. Quantitation of immunoglobulin-producing cells in small intestinal mucosa of patients with IgA nephropathy. Clin. Immunol. Immunopathol. 1983; 26: 4425.
  • 100
    De Fijter JW, Eijgenraam JW, Braam CA et al. Deficient IgA1 immune response to nasal cholera toxin subunit B in primary IgA nephropathy. Kidney Int. 1996; 50: 95261.
  • 101
    Roodnat JI, De Fijter JW, Van Kooten C, Daha MR, Van Es LA. Decreased IgA1 response after primary oral immunization with live typhoid vaccine in primary IgA nephropathy. Nephrol. Dial. Transplant. 1999; 14: 3539.
  • 102
    Rott LS, Briskin MJ, Andrew DP, Berg EL, Butcher EC. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with beta 7 integrins and memory differentiation. J. Immunol. 1996; 156: 372736.
  • 103
    Schweighoffer T, Tanaka Y, Tidswell M et al. Selective expression of integrin alpha 4 beta 7 on a subset of human CD4+ memory T cells with Hallmarks of gut-trophism. J. Immunol. 1993; 151: 71729.
  • 104
    Harper SJ, Allen AC, Pringle JH, Feehally J. Increased dimeric IgA producing B cells in the bone marrow in IgA nephropathy determined by in situ hybridisation for J chain mRNA. J. Clin. Pathol. 1996; 49: 3842.
  • 105
    Van Den Wall Bake AW, Daha MR, Haaijman JJ, Radl J, Van Der Ark A, Van Es LA. Elevated production of polymeric and monomeric IgA1 by the bone marrow in IgA nephropathy. Kidney Int. 1989; 35: 1400404.
  • 106
    Barratt J, Batra A, Montgomery U, Feehally J, Smith AC. Increased Systemic Homing CD4 T Cells in IgA Nephropathy. J. Am. Soc. Nephrol. 2003; 14: 886A.
  • 107
    Smith AC, Batra A, Barratt J, Montgomery U, Feehally J. Homing Receptor Expression of Peripheral Blood B Cell Subsets in IgA Nephropathy. J. Am. Soc. Nephrol. 2003; 14: 632A.
  • 108
    Allen AC, Topham PS, Harper SJ, Feehally J. Leucocyte beta 1,3 galactosyltransferase activity in IgA nephropathy. Nephrol. Dial. Transplant. 1997; 12: 7016.
  • 109
    Buck KS, Barratt J, Feehally J, Smith AC. Beta-1–3-galactosyltransferase activity in IgA nephropathy. J. Am. Soc. Nephrol. 2003; 14: 632A.
  • 110
    Gharavi AG, Yan Y, Scolari F et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nat. Genet. 2000; 26: 3547.
  • 111
    Li GS, Zhang H, Lv JC, Shen Y, Wang HY. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 2007; 71: 448531.
  • 112
    Alexander WS, Viney EM, Zhang JG et al. Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc. Natl Acad. Sci. USA 2006; 103: 164427.
  • 113
    Schietinger A, Philip M, Yoshida BA et al. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314: 3048.
  • 114
    Qin W, Zhou Q, Yang LC et al. Peripheral B lymphocyte beta1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J. Intern. Med. 2005; 258: 46777.
  • 115
    Breitfeld PP, Simmons CF Jr, Strous GJ, Geuze HJ, Schwartz AL. Cell biology of the asialoglycoprotein receptor system: A model of receptor-mediated endocytosis. Int. Rev. Cytol. 1985; 97: 4795.
  • 116
    Basset C, Devauchelle V, Durand V et al. Basic immunology: Glycosylation of immunoglobulin A influences its receptor binding [In Process Citation]. Scand. J. Immunol. 1999; 50: 5729.
  • 117
    Leung JC, Tang SC, Lam MF, Chan TM, Lai KN. Charge-dependent binding of polymeric IgA1 to human mesangial cells in IgA nephropathy. Kidney Int. 2001; 59: 27785.
  • 118
    Shuib AS, Chua CT, Hashim OH. Sera of IgA nephropathy patients contain a heterogeneous population of relatively cationic alpha-heavy chains. Nephron 1998; 78: 29095.
  • 119
    Mandal C. Sialic acid binding lectins. Experientia 1990; 46: 43341.