• 1
    Christenson GA, Pyle RL, Mitchell JE. Estimated lifetime prevalence of trichotillomania in college students. J. Clin. Psychiatry 1992; 52: 415417.
  • 2
    Minichiello WE, O'Sullivan PL, Osgood-Hynes D., Baer L. Trichotillomania: Clinical aspects and treatment strategies. Harvard Rev. Psychiatry 1994; 1: 336344.
  • 3
    Soriano J., O'Sullivan RL, Baer L., Phillips K., McNally RJ, Jenike MA. Trichotillomania and self-esteem: A survey of sixty-two female hairpullers. J. Clin. Psychiatry 1996; 57: 7782.
  • 4
    Swedo SE, Rapoport JL, Leonard HL et al. Regional cerebral glucose metabolism of women with trichotillomania. Arch. Gen. Psychiatry 1991; 48: 828833.
  • 5
    O'Sullivan R., Rauch S., Breiter H. et al. Reduced basal ganglia volumes in trichotillomania measured via morphometric MRI. Biol. Psychiatry 1996; 42: 3945.
  • 6
    O'Sullivan R. Rauch S., Breiter H. et al. Reduced basal ganglia volumes and trichotillomania bv morphometric MRI. J. Int. Neuropsychol. Soc. 1996; 2: A34.
  • 7
    Baxter LR Jr. Schwartz JM, Bergman KS et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch. Gen. Psychiatry 1992; 49: 681689.
  • 8
    Insel TR. Toward a neuroanatomy of obsessive-compulsive disorder. Arch. Gen. Psychiatry 1992; 49: 739744.
  • 9
    Jenike MA, Breiter HC. Baer L. et al. Cerebral structural abnormalities in obsessive-compulsive disorder: A quantitative morphometric magnetic resonance imaging study. Arch. Gen. Psychiatry 1996; 53: 625632.
  • 10
    Chase TN, Geoffrey V., Gillespie M., Burrows GH. Structural and functional studies of Gilles de la Tourette syndrome. Rev. Neurol. (Paris) 1986; 142: 851855.
  • 11
    Stoetter B., Braun AR. Randolph C. et al. Functional neuroanatomy of Tourette syndrome: Limbic-motor interactions studied with FDG PET. In: Chase TN, Friedhoff AJ. Cohen DJ (eds). Advances in Neurology, Vol. 58. Raven Press, New York . 1992; 213226.
  • 12
    Hyde TM, Stacey ME, Coppola R., Handel SF, Rickler KC, Weinberger DR. Cerebral morphometric abnormalities in Tourette's syndrome: A quantitative MR study of monozygotic twins. Neurology 1995; 45: 11761183.
  • 13
    Hyde TM, Weinberger DR. Tourette's syndrome: A model neuropsychiatric disorder. JAMA 1995; 273: 498501.
  • 14
    Rademacher J. Galaburda AM, Kennedy DN, Filipek PA. Caviness VS. Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging. J. Cognitive Neuroscience 1992; 4: 352374.
  • 15
    Caviness VS, Meyer J. Makris N., Kennedy N. MRI-based topographic parcellation of human neocortex: An anatomically specified method with estimate of reliability. J. Cogu. Neurosci. 1996; 8: 566587.
  • 16
    Baxter LR, Schwartz JM, Guze BH et al. Neuroimaging in obsessive-compulsive disorder: Seeking the mediating neuroanatomy. In: Jenike MA, Baer L., Minichiello WE (eds), Ohsessive Compulsive Disorder: Theory and Management, 2nd edn. Chicago , Year Book Medical Publishers, 1990; 167188.
  • 17
    Rauch SL, Jenike MA. Neurobiological models of obsessive-compulsive disorder. Psychosomatics 1993; 34: 2032.
  • 18
    Rauch SL, Jenike MA, Alpert NM et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15–labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 1994; 51: 6270.
  • 19
    Brody AL, Saxena S. Brain imaging in obsessive-compulsive disorder: Evidence for the involvement of frontal-subcortical circuitry in the mediation of symptomatology. CNS Spectnam 1996; 1: 20.
  • 1
    Breiter HC, Filipek PA. Kennedy DN et al. Retrocallosal white matter abnormalities in patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry 1994; 51: 663664.
  • 21
    Breiter HC., Rauch SL., Kwong KK. et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch. Gen. Psychiatry 1996; 53: 595606.
  • 22
    Robinson D., Wu H., Munne RA et al. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch. Gen. Psychiatry 1995; 52: 393398.
  • 23
    Peterson B., Riddle MA, Cohen DJ et al. Reduced basal ganglia volumes in Tourette's syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology 1993; 43: 941949.
  • 24
    Singer HS, Reiss AL, Brown JE et al. Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology 1993; 43: 950956.
  • 25
    Scarone S., Colombo C., Livian S. et al. Increased right caudate nucleus size in obsessive-compulsive disorder: Detection with magnetic resonance imaging. Psychiatry Res. Neuroimaging 1992; 45: 115121.
  • 26
    Alexander GE, DeLong MR. Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Anna Rev. neurosci 1986: 9: 357381.
  • 27
    Alexander GE. Crutcher MO. DeLong MR. Basal ganglia-thalamocortical cireuits: Parallel substrates for motor, oculomotor, 'prefrontal' and 'limbic' funetiom. Prog. Brain Res. 1990; 85: 119140.
  • 28
    Kennedy DN. Filipek PA. Caviness VS. Anatomic segmentation and volumetric calculations in nuclear magnetic resonance imaging. IEEE Trans. Med. Imag. 1989; 8: 17.
  • 29
    Kennedy ON. Moyer JW. Filipek PA. Caviness VS. MRI-based topographic segmentation. In: Thatcher R., Hallett M. Zeffiro I. Jhohn R. Huerta M. (eds) Functional Neuroimaging. Academic Press, Orlando , 1994: 201208.
  • 30
    Filipek PA. Richelme C. Kennedy DN. Caviness VS. The young adult human bram: An MRI-based morphometrric analysis. Cever Cortex 1994: 4: 345360.
  • 31
    Grachev ID, Jenike MA, Baer L. et al. Magnetic resonance imaging study of the brain's neocortex. Neurohnage 1996; 3: A132.
  • 32
    Ono M. Kubik S. Abernathey CD. Atlas of the Cerebral Sulci, Georg Thicme Verlag. New York . 1990.
  • 33
    Rapoport JL.. Wise SP.. Obsessive-compulsive disorder: Is it a basal ganglia dysfunction? Psychophanuacol. Bull. 1988; 24: 380384.
  • 34
    Modell J. Mountz J., Curtis G. et al. Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. J. Neuropsysiologic 1989; 1: 2736.
  • 35
    Mesulam M-M. Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Mesulam M-M (ed.). Principle of Behavioral Neurology. F. A. Davis Co.. Philadelphia , 1985; 170.
  • 36
    Paxinos G. The Human Nerrous System. Academic Press. London , 1990.
  • 37
    Brickner RM. An intepretation of frontal lobe function based upon the study of a case ot partial bilateral frontal lobectomy. Assoc. Res. New. Ment. Dis. Proc. 1934; 13: 259351.
  • 38
    Aekerly S. Instinctive, emotional and mental changes following prefrontal lobe extirpation. Am. J. Psychnatry 1935; 92: 717729.
  • 39
    Goldstein K. The significance of the frontal lobes for mental performances. J. Neurol. Psychopathol. 1930; 17: 2740.
  • 40
    Brinkman C. Porter R. Supplementary motor area and premotor area of monkey cerebral cortex: Functional organization and activities of single neurons during performance of a learned movement. In: Desmedt JE (ed.). Motor Control Mechanisms in Health and Disease. Raven Press, New York , 1983.
  • 41
    MacLean PD. The Triune Brain in Evolution: Role in Paleocerebral function. Plenum Press. New York , 1990.
  • 42
    Bancaud J. Talairach J. Clinical semiology of frontal lobe seizures. Adv. Neurol. 1992; 57: 358.
  • 43
    Hebb DD. Man's frontal lobes. Arch. Neurol. Psychiatry 1945; 54: 1024.
  • 44
    Laplaue D. Talairach J. Meimnger V. Bancaud J. Bouchareine A. Motor consequences ot motor area ablations in man. J. Neurol. Sci. 1977; 31: 2949.
  • 45
    Sutton JP. Modelling cortical disorders using nested networks. In: Reggia I. Berndt R. Ruppin E. (eds) Neural Modeling of Brain amd Cognitive Disorder. World Scientific Publishing Co., Singapore , 1996; 393409.
  • 46
    McClelland JL. Why there are complementary learning systems in the brain? Insights from the successes and failures ot connectionist models. J. Int. Neuropsychol. Soc. 1990; 2: A8.
  • 47
    McIntosh AR. Measuring functional neural interactions with structural equation modeling. J. Int. Neuropsychol. Soc. 1996; 2: A45.
  • 48
    Grady CL. The roles of medial temporal and prefrontal cortex in encoding and recognition of visual stimuli. J. Int. Neuropsychol. Sac. 1996; 2: A45.
  • 49
    Goldman PS. Rosvold HE. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp. Neurol. 1970; 27: 291304.
  • 50
    Fuster J. Bauer PH. Jervey JP. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp. Neurol. 1982; 77: 679694.
  • 51
    Barbas H. Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 1989; 286: 353375.
  • 52
    Frith CD. Eriston K. Liddle PF, Frackowiak RSJ. Willed action and the prefrontal cortex in man: A study with PE L. Prog. Soc. Load. B. Biol. Sci. 1991; 244: 241240.
  • 53
    Wise SP. Weinrich M., Mauritz KII. Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 1983; 260: 301305.
  • 54
    Damasio AR, Damasio H. Localization of lesion in achromatopsia and prosopagnosia. In: Kertesz A. (ed.). LocaliZation in Neuropsylchology Academic Press. New York , 1983; 417428.
  • 55
    Damasio AR. Tranel D. Damasio H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomicallv to social stimuli. Behav. Brain Res. 1990 41: 8194.
  • 56
    Buchanan SL. Powell DA. Cingulothalamic and prefrontal control of autonomic function, In: Vogt BA. Gabriel M. (eds) Neurobiology of Cingulate Cortex amd Limhic Thtilamns: A Comprehensive Handhook. Birkhauser. Boston . 1993: 581414.
  • 57
    Cohen RM, Semple WE. Gross M. Holcomb HH. Dowling MS. Nordahl TE. Functional localization of sustained attention: Comparison to sensory stimulation in the absence of instruction. Neuropsychiatry Neuropsychol. Behar. Neurol. 1988; 1: 320.
  • 58
    Gabriel M. Discriminative avoidance learning: A model system. In: Vogt BA. Gabriel M. (eds). Neurobiology of Ciangulate Cortex and Limbic Thalamus A Compreshensive Handbook. Birkhauser. Boston . 1993 478523.
  • 59
    Biver L. Goldman S., Luxen A. et al. Altered frontostnatal relationship in unmedicated schizophrenic patients. Psychiatry Res. Neuroimag. 1995; 61: 161171.
  • 60
    Phelps ME. Kuhl DE, Mazziotta JC. Metabolic mapping of the brain's response to visual stimulation: Studies in humans. Science 1981; 211: 14451448.
  • 61
    Petersen SE., Fox PT.. Snyder AZ.Raichle ML. Activation of extrastnate and frontal cortical areas by visual words and word-like stimuli. Science 1990; 249: 10411044.
  • 62
    Corbetta M. Miczm FM, Dobmever S. Shulman Gl. Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. J. Neurosci. 1991; 11: 23832402.
  • 63
    Casey KL. Minoshima S. Berger KL, Koeppe RA. Morrow TJ. Frey HA. Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli, J. Neurophysiol. 1994; 71: 802807.
  • 64
    Van Essen DC. Maunsell JHR. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 1983; 6: 370375.
  • 65
    Zilles K. Cortex. In; Paxinos G. (ed. The Human Nerous System. Academic Press. Orlando . 1990.
  • 66
    Zihl J. Vou Cramon D. Mai N. Selective disturbance ot movement vision after the bilateral bram damage. Brain 1983; 106: 313340.
  • 67
    Lockwood JH. Moulton DO. Picon-Nicto L. Vanderioeg RD, Ochipa C. Visual associative agnosia: A traumatic brain injury case without typical focal anatomic findings. J. Int. Neuropsychol. Soc. 1996; 2 A17.
  • 68
    Berenbaum S. Are variations in cognitive abilities related to variations in brain organization? J. Int. Neuropsychol. Soc. 1996; 2: A67.
  • 69
    Ranch SL. Savage CR. Brown HD et al. PET investigation of implicit and explicit sequence learning. Hum. Brain Mapp. 1995; 3: 271286.
  • 70
    Ldaber SN. Kumshio K. Mizobuchi M., Lynd-Balta E. The orbital and medial prefrontal circuit through the primate basal ganglia. J. Neuroscience. 1995; 15: 48514867.
  • 71
    Hover D. Clarke DE. Lozard JR et al. International union of pharmacology classification of receptors for 5-hydroxytryptaminc (serotonin). Pharmacol. Rev. 1994; 46: 157203.
  • 72
    Zald DH. Kim SW. Anatomy and function of the orbital frontal cortex. I. Anatomy, neurocircuitry, and obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 1996; 8: 125138.
  • 73
    Dwyer JH III, Rinn WE. The role of the right hemisphere in contextual inference. Neuropsychology. 1981; 19: 479482.
  • 74
    Delis DC, Wapner W., Gardner H. Moses JA. The contribution of the right hemisphere to the organization of paragraphs. Coitex 1983; 19: 4350.
  • 75
    Brumback RA, Staton RD, Wilson H. Right cerebral hemispheric dysfunction. Arch. Neurol. 1984; 41: 248249.
  • 76
    Posner MI, Petersen SE. The attention system of the human brain. Annu. Rev. Neurosci. 1990; 13: 2542.