SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Goodwin FK, Jamison KR. Manic–Depressive Illness. Oxford University Press, New York, 1990.
  • 2
    Manji HK, Moore GJ, Chen G. Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilisers. Br. J. Psychiatry 2001; 78 (Suppl. 41): S107S119.
  • 3
    Soares JC (ed.). Brain Imaging in Affective Disorders. Marcel Dekker, New York, 2003.
  • 4
    Kato T, Takahashi S, Shioiri T, Inubushi T. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J. Affect. Disord. 1993; 27: 5360.
  • 5
    Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S. Phosphorus-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder. Psychiatry Res. Neuroimaging 1994; 55: 4150.
  • 6
    Deicken RF, Fein G, Weiner MW. Abnormal frontal lobe phosphorus metabolism in bipolar disorder. Am. J. Psychiatry 1995; 152: 915918.
  • 7
    Deicken DF, Weiner MW, Fein G. Decreased temporal lobe phosphomonoesters in bipolar disorder. J. Affect. Disord. 1995; 33: 195199.
  • 8
    Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J. Affect. Disord. 1994; 31: 125133.
  • 9
    Sharma R., Venkatasubramanian PN, Barany M, Davis JM. Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr. Res. 1992; 8: 4349.
  • 10
    Lafer B, Renshaw PF, Sachs G et al. Proton MRS of the basal ganglia in bipolar disorder. Biol. Psychiatry 1994; 35: 685 (Abstract).
  • 11
    Hamakawa H, Kato T, Murashita J, Kato N. Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. Eur. Arch. Psychiatry Clin. Neurosci. 1998; 248: 5358.
  • 12
    Ohara K, Isoda H, Suzuki Y et al. Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiatry Res. 1998; 84: 5560.
  • 13
    Deicken RF, Eliaz Y, Feiwell R, Schuff N. Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiatry Res. 2001; 106: 3545.
  • 14
    Moore CM, Breeze JL, Gruber SA et al. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord. 2000; 2: 207216.
  • 15
    Davanzo P, Thomas MA, Yue K et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 2001; 24: 359369.
  • 16
    Hamakawa H, Kato T, Shioiri T, Inubushi T, Kato N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol. Med. 1999; 29: 639644.
  • 17
    Bertolino A, Frye M, Callicott JH et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol. Psychiatry 2003; 53: 906913.
  • 18
    Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am. J. Psychiatry 2003; 160: 873882.
  • 19
    Chang K, Adleman N, Dienes K, Barnea-Goraly N, Reiss A, Ketter T. Decreased N-acetylaspartate in children with familial bipolar disorder. Biol. Psychiatry 2003; 53: 10591065.
  • 20
    Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol. Psychiatry 2000; 47: 475481.
  • 21
    Cecil KMI, Bello MP, Morey R, Strakowski SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord. 2002; 4: 357365.
  • 22
    Moore GJ, Bebchuk JM, Hasanat K et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2′s neurotrophic effects? Biol. Psychiatry 2000; 48: 18.
  • 23
    Miller BL, Chang L, Booth R et al. In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci. 1996; 58: 19291935.
  • 24
    Duijn JH, Matson GB, Maudsley AA, Hugg JW, Weiner MW. Human brain infarction: proton MR spectroscopy. Radiology 1992; 183: 711718.
  • 25
    Bottomley PA, Foster TB, Darrow RD. Depth-resolved surface coil spectroscopy (DRESS) for in vivo 1H, 31P and 13C NMR. J. Magn. Reson. 1984; 59: 338342.
  • 26
    Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T. Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur. Arch. Psychiatry Clin. Neurosci. 1998; 248: 301306.
  • 27
    Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2000; 2: 180190.
  • 28
    Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol. Psychiatry 2001; 6: 625633.
  • 29
    Kato T, Stine OC, McMahon FJ, Crowe RR. Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol. Psychiatry 1997; 42: 871875.
  • 30
    Kato T, Kunugi H, Nanko S, Kato N. Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am. J. Med. Genet. 2000; 96: 182186.
  • 31
    Kato T, Kunugi H, Nanko S, Kato N. Mitochondrial DNA polymorphisms in bipolar disorder. J. Affect. Disord. 2001; 62: 151164.
  • 32
    Washizuka S, Kakiuchi C, Mori K et al. Association of decreased expression and promotor polymorphisms of mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Am. J. Med. Genet. 2003; 120B: 7278.
  • 33
    Rango M, Bozzali M, Prelle A, Scarlato G, Bresolin N. Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: a phosphorus magnetic resonance spectroscopy study. J. Cereb. Blood Flow Metab. 2001; 21: 8591.
  • 34
    Siciliano G, Tessa A, Petrini S et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul. Disord. 2003; 13: 162165.
  • 35
    Suomalainen A, Majander A, Haltia M et al. Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J. Clin. Invest. 1992; 90: 6166.
  • 36
    Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 2001; 28: 211212.