SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Parks RW, Becker RE, Rippey RF et al. Increased regional cerebral glucose metabolism and semantic memory performance in Alzheimer’s disease: A pilot double blind transdermal nicotine positron emission tomography study. Neuropsychol. Rev. 1996; 6: 6179.
  • 2
    Schwarz RD, Callahan MJ, Coughenour LL et al. Milameline (CI-979/RU35926): A muscarinic receptor agonist with cognition-activating properties: Biochemical and in vivo characterization. J. Pharmacol. Exp. Ther. 1999; 291: 812822.
  • 3
    M’Harzi M, Palou AM, Oberlander C, Barzaghi F. Antagonism of scopolamine-induced memory impairments in rats by the muscarinic agonist RU 35 926 (CI−979). Pharmacol. Biochem. Behav. 1995; 51: 119124.
  • 4
    Callahan MJ. Combining tacrine with milameline reverses a scopolamine-induced impairment of continuous performance in rhesus monkeys. Psychopharmacologia 1999; 144: 234238.
  • 5
    Sedman AJ, Bockbrader H, Schwarz RD. Preclinical and phase 1 clinical characterization of CI-979/RU35926, a novel muscarinic agonist for the treatment of Alzheimer’s disease. Life Sci. 1995; 56: 877882.
  • 6
    Bymaster FP, Carter PA, Peters SC et al. Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res. 1998; 795: 179190.
  • 7
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939944.
  • 8
    Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975; 12: 189198.
  • 9
    Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br. J. Psychiatry 1982; 140: 566572.
  • 10
    Hachinski VC, Iliff LD, Zilhka E et al. Cerebral blood flow in dementia. Arch. Neurol. 1975; 32: 632637.
  • 11
    Brodaty H. Low diagnostic yield in a memory disorders clinic. Int. Psychogeriatr. 1990; 2: 149159.
  • 12
    Trollor JN, Sachdev PS, Haindl W, Brodaty H, Wen W, Walker BM. A high resolution single photon emission computerized tomography study of verbal recognition memory in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders. 2006; 21: 267274
  • 13
    Trollor JN, Sachdev PS, Haindl W, Brodaty H, Wen W, Walker BM. Regional cerebral blood flow deficits in mild Alzheimer’s disease using high resolution single photon emission computerized tomography. Psychiatry Clin. Neurosci. 2005; 59: 280290.
  • 14
    Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. A fully automatic multimodality image registration algorithm. J. Comput. Assist. Tomogr. 1995; 19: 615623.
  • 15
    Mack WJ, Freed DM, Williams BW, Henderson VW. Boston Naming Test: Shortened versions for use in Alzheimer’s disease. J. Gerontol. 1992; 47: P154P158.
  • 16
    Spreen O, Strauss E. A Compendium of Neuropsychological Tests. Administration, Norms and Commentary. Oxford University Press, New York, 1998.
  • 17
    Tombaugh TN, Kozak J, Rees L. Normative data for the Controlled Oral Word Association Test, personal communication 1996. In: Spreen O, Strauss E (ed.). A Compendium of Neuropsychological Tests. Administration, Norms and Commentary. Oxford University Press, New York, 1998; 447464.
  • 18
    Ivnik RJ, Malec JF, Smith GE et al. Mayo’s Older Americans Normative Studies: WMS-R norms for ages 56–94. Clin. Neuropsychol. 1992; 6 (Suppl.): 4982.
  • 19
    Ivnik RJ, Malec JF, Smith GE et al. Mayo’s Older Americans Normative Studies: WAIS-R norms for ages 56–97. Clin. Neuropsychol. 1992; 6 (Suppl.): 130.
  • 20
    Ivnik RJ, Malec JF, Smith GE, Tangalos EG, Petersen RC. Neuropsychological tests’ norms above age 55: COWAT, BNT, MAE Token, WRAT-R reading, AMNART, STROOP, TMT, and JLO. Clin. Neuropsychol. 1996; 10: 262278.
  • 21
    Ryan JJ, Paolo AM. A screening procedure for estimating premorbid intelligence in the elderly. Clin. Neuropsychol. 1992; 6: 5362.
  • 22
    Honer WG, Prohovnik I, Smith G, Lucas LR. Scopolamine reduces frontal cortex perfusion. J. Cereb. Blood Flow Metab. 1988; 8: 635641.
  • 23
    Gitelman DR, Prohovnik I. Muscarinic and nicotinic contributions to cognitive function and cortical blood flow. Neurobiol. Aging 1992; 13: 313318.
  • 24
    Cohen RM, Gross M, Semple WE, Nordahl TE, Sunderland T. The Metabolic Brain Pattern of young subjects given scopolamine. Exp. Brain Res. 1994; 100: 133143.
  • 25
    Ray CA, Blin J, Chase TN, Piercey MF. Effects of cholinergic agonists on regional brain energy metabolism in the scopolamine-treated rat. Neuropharmacology 1992; 31: 11931199.
  • 26
    Weinberger J, Greenberg JH, Waldman MT, Sylvestro A, Reivich M. The effect of scopolamine on local glucose metabolism in rat brain. Brain Res. 1979; 177: 337345.
  • 27
    Kiyosawa M, Baron JC, Hamel E et al. Time course of effects of unilateral lesions of the nucleus basalis of Meynert on glucose utilization by the cerebral cortex. Positron tomography in baboons. Brain 1989; 112: 435455.
  • 28
    Lamarca MV, Fibiger HC. Deoxyglucose uptake and choline acetyltransferase activity in cerebral cortex following lesions of the nucleus basalis magnocellularis. Brain Res. 1984; 307: 366369.
  • 29
    Hartvig P, Torstenson R, Bjurling P et al. Regional brain distribution and binding of the muscarinic receptor agonist CI-979 studied by positron emission tomography in the monkey. Dement. Geriatr. Cogn. Disord. 1997; 8: 259266.
  • 30
    Shallice T, Fletcher P, Frith CD, Grasby P, Frackowiak RS, Dolan RJ. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 1994; 368: 633635.
  • 31
    Tulving E, Kapur S, Markowitsch HJ, Craik FI, Habib R, Houle S. Neuroanatomical correlates of retrieval in episodic memory: Auditory sentence recognition. Proc. Natl. Acad. Sci. USA 1994; 91: 20122015.
  • 32
    Cabeza R, Grady CL, Nyberg L et al. Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. J. Neurosci. 1997; 17: 391400.
  • 33
    Madden DJ, Turkington TG, Provenzale JM et al. Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum. Brain Mapp. 1999; 7: 115135.
  • 34
    Cabeza R, Anderson ND, Houle S, Mangels JA, Nyberg L. Age-related differences in neural activity during item and temporal-order memory retrieval: A positron emission tomography study. J. Cogn. Neurosci. 2000; 12: 197206.
  • 35
    Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proc. Natl. Acad. Sci. USA 1994; 91: 20162020.
  • 36
    Desgranges B, Baron JC, Eustache F. The functional neuroanatomy of episodic memory: The role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage 1998; 8: 198213.
  • 37
    Kim JJ, Andreasen NC, O’Leary DS et al. Direct comparison of the neural substrates of recognition memory for words and faces. Brain 1999; 122: 10691083.
  • 38
    Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL. Face encoding and recognition in the human brain. Proc. Natl. Acad. Sci. USA 1996; 93: 922927.
  • 39
    Furey ML, Pietrini P, Haxby JV et al. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc. Natl. Acad. Sci. USA 1997; 94: 65126516.
  • 40
    Furey ML, Pietrini P, Alexander GE, Schapiro MB, Horwitz B. Cholinergic enhancement improves performance on working memory by modulating the functional activity in distinct brain regions: A positron emission tomography regional cerebral blood flow study in healthy humans. Brain Res. Bull. 2000; 51: 213218.
  • 41
    Nordberg A, Lilja A, Lundqvist H et al. Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol. Aging 1992; 13: 747758.
  • 42
    Nordberg A. Effect of long-term treatment with tacrine (THA) in Alzheimer’s disease as visualized by PET. Acta Neurol. Scand. 1993; 149 (Suppl.): 6265.
  • 43
    Nordberg A, Amberla K, Shigeta M et al. Long-term tacrine treatment in three mild Alzheimer patients: Effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis. Assoc. Disord. 1998; 12: 228237.
  • 44
    Harkins SW, Taylor JR, Mattay VS. Response to tacrine in patients with dementia of the Alzheimer’s type: Cerebral perfusion change is related to change in mental status. Int. J. Neurosci. 1996; 84: 149156.
  • 45
    Szelies B, Herholz K, Pawlik G, Beil C, Wienhard K, Heiss WD. Cerebral glucose metabolism in presenile dementia of the Alzheimer type – follow-up of therapy with muscarinergic choline agonists. Fortschr. Neurol. Psychiatr. 1986; 54: 364373.
  • 46
    Hunter R, Wyper DJ, Patterson J, Hansen MT, Goodwin GM. Cerebral pharmacodynamics of physostigmine in Alzheimer’s disease investigated using single-photon computerised tomography. Br. J. Psychiatry 1991; 158: 351357.
  • 47
    Tune L, Brandt J, Frost JJ et al. Physostigmine in Alzheimer’s disease: Effects on cognitive functioning, cerebral glucose metabolism analyzed by positron emission tomography and cerebral blood flow analyzed by single photon emission tomography. Acta Psychiatr. Scand. 1991; 366 (Suppl.): 6165.