SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Kimura T, Ono T, Takamatsu J et al. Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 1996; 7: 177181.
  • 2
    Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol. 2002; 103: 2635.
  • 3
    Nakano H, Kobayashi K, Sugimori K et al. Regional analysis of differently phosphorylated tau proteins in brains from patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 2004; 17: 122131.
  • 4
    Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 2000; 40: 617647.
  • 5
    Hashiguchi M, Sobue K, Paudel HK. 14-3-3 ζ is an effector of tau protein phosphorylation. J. Biol. Chem. 2000; 275: 2524725254.
  • 6
    Rosenquist M. 14-3-3 proteins in apoptosis. Braz. J. Med. Biol. Res. 2003; 36: 403408.
  • 7
    Sudo S, Shiozawa M, Cairns NJ, Wada Y. Aberrant accentuation of neurofibrillary degeneration in the hippocampus of Alzheimer's disease with amyloid precursor protein 717 and presenilin-1 gene mutations. J. Neurol. Sci. 2005; 234: 5565.
  • 8
    Kitamura T, Sugimori K, Sudo S, Kobayashi K. Relationship between microtubule-binding repeats and morphology of neurofibrillary tangle in Alzheimer's disease. Acta Neurol. Scand. 2005; 112: 327334.
  • 9
    Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991; 82: 239259.
  • 10
    Moore BW, Perez VJ. Physiological and biochemical aspects of nervous integration. In: Carlson FD (ed.). Prentice Hall, New Jersey, 1967; 343359.
  • 11
    Boston PF, Jackson P, Thompson RJ. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J. Neurochem. 1982; 38: 14751482.
  • 12
    Hernandez F, Cuadros R, Avila J. Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. Neurosci. Lett. 2004; 357: 143146.
  • 13
    Skoulakis EM, Davis RL. 14-3-3 proteins in neuronal development and function. Mol. Neurobiol. 1998; 16: 269284.
  • 14
    Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci. Lett. 1996; 209: 5760.
  • 15
    Kawamoto Y, Akiguchi I, Nakamura S, Honjyo Y, Shibasaki H, Budka H. 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brain. J. Neuropathol. Exp. Neurol. 2002; 61: 245253.
  • 16
    Kawamoto Y, Akiguchi I, Nakamura S, Budka H. Accumulation of 14-3-3 proteins in glial cytoplasmic inclusions in multiple system atrophy. Ann. Neurol. 2002; 52: 722731.
  • 17
    Umahara T, Uchihara T, Tsuchiya K et al. 14-3-3 proteins and zeta isoform containing neurofibrillary tangles in patients with Alzheimer's disease. Acta Neuropathol. 2004; 108: 279286.
  • 18
    Agarwal-Mawal A, Qureshi HY, Cafferty PW et al. 14-3-3 connects glycogen synthase kinase-3β to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem. 2003; 278: 1272212728.
  • 19
    Kobayashi K, Hayashi M, Nakano H et al. Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 2002; 28: 238251.
  • 20
    Kobayashi K, Nakano H, Hayashi M et al. Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer's disease. J. Neurol. Sci. 2003; 208: 1724.
  • 21
    Kobayashi K, Hayashi M, Nakano H, Shimazaki M, Sugimori K, Koshino Y. Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer's disease. J. Alzheimers Dis. 2004; 6: 623632.
  • 22
    Mirra SS, Heyman A, McKeel D et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991; 41: 479486.
  • 23
    De Silva R, Lashley T, Gibb G et al. Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol. Appl. Neurobiol. 2003; 29: 288302.
  • 24
    Wakabayashi H, Yano M, Tachikawa N, Oka S, Maeda M, Kido H. Increased concentration of 14-3-3 epsilon, gamma, and zeta isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clin. Chim. Acta 2001; 312: 97105.
  • 25
    Mailliot C, Bussiere T, Hamdane M et al. Pathological tau phenotypes. The weight of mutations, polymorphisms, and differential neuronal vulnerabilities. Ann. N. Y. Acad. Sci. 2000; 920: 107114.
  • 26
    Goedert M, Jakes R, Crowther RA et al. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem. J. 1994; 301: 871877.
  • 27
    Goedert M, Jakes R, Vanmechelen E. Monoclonal antibody AT8 recognizes tau protein phosphorylated at both serine 202 and threonine 205. Neurosci. Lett. 1995; 189: 167169.
  • 28
    Papasozomenos SC, Binder LI. Phosphorylation determines two distinct species of tau in the central nervous system. Cell Motil. Cytoskeleton 1987; 8: 210226.
  • 29
    Papasozomenos SC. Tau protein immunoreactivity in dementia of the Alzheimer type: II. Electron microscopy and pathogenetic implications. Effects of fixation on the morphology of the Alzheimer's abnormal filaments. Lab. Invest. 1989; 60: 375389.
  • 30
    Yang SD, Yu JS, Liu WK, Yen SH. Synergistic control mechanism for abnormal site phosphorylation of Alzheimer's disease brain tau by kinase FA/GSK-3 alpha. Biochem. Biophys. Res. Commun. 1993; 197: 400406.
  • 31
    Singh TJ, Zaidi T, Grundke-Iqbal I, Iqbal K. Non-proline-dependent protein kinases phosphorylate several sites found in tau from Alzheimer disease brain. Mol. Cell. Biochem. 1996; 154: 143151.
  • 32
    Wu JM, Chen Y, Hsieh TC, Brandt R, Lee G. Phosphorylation of native and truncated isoforms of protein tau by the double-stranded DNA-dependent protein kinase (DNA-PK) shows that the primary phosphorylation sites are localized between amino acid residues 212–231 of the longest tau. Biochem. Mol. Biol. Int. 1996; 40: 2131.
  • 33
    Jicha GA, Lane E, Vincent I, Otvos L Jr, Hoffmann R, Davies P. A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem. 1997; 69: 20872095.
  • 34
    Chun J, Kwon T, Lee EJ et al. 14-3-3 Protein mediates phosphorylation of microtubule-associated protein tau by serum- and glucocorticoid-induced protein kinase 1. Mol. Cells 2004; 18: 360368.
  • 35
    Matthews TA, Johnson GVW. 14-3-3 does not increase GSK3-mediated tau phosphorylation in cell culture models. Neurosci. Lett. 2005; 384: 211216.
  • 36
    Zheng Q, Yin G, Yan C, Cavet M, Berk BC. 14-3-3β binds to big mitogen-activated protein kinase1 (BMK1/ERK5) and regulates BMK1 function. J. Biol. Chem. 2004; 279: 87878791.
  • 37
    Rodriguez LG, Guan JL. 14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove. J. Cell. Physiol. 2005; 202: 285294.