SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Premack D, Woodruff G. Chimpanzee problem-solving: a test for comprehension. Science 1978; 202: 532535.
  • 2
    Povinelli DJ, Preuss TM. Theory of mind: evolutionary history of a cognitive specialization. Trends Neurosci. 1995; 18: 418424.
  • 3
    Siegal M, Varley R. Neural systems involved in ‘theory of mind’. Nat. Rev. Neurosci. 2002; 3: 463471.
  • 4
    Frith U, Frith CD. Development and neurophysiology of mentalizing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003; 358: 459473.
  • 5
    Ohnishi T, Moriguchi Y, Matsuda H et al. The neural network for the mirror system and mentalizing in normally developed children: an fMRI study. Neuroreport 2004; 15: 14831487.
  • 6
    Castelli F, Frith C, Happe F, Frith U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 2002; 125: 18391849.
  • 7
    Happe F, Ehlers S, Fletcher P et al. ‘Theory of mind’ in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 1996; 8: 197201.
  • 8
    Ohnishi T, Matsuda H, Hashimoto T et al. Abnormal regional cerebral blood flow in childhood autism. Brain 2000; 123 (Part 9): 18381844.
  • 9
    Calder AJ, Lawrence AD, Keane J et al. Reading the mind from eye gaze. Neuropsychologia 2002; 40: 11291138.
  • 10
    Gregory C, Lough S, Stone V et al. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer's disease: theoretical and practical implications. Brain 2002; 125: 752764.
  • 11
    McCabe K, Houser D, Ryan L, Smith V, Trouard T. A functional imaging study of cooperation in two-person reciprocal exchange. Proc. Natl Acad. Sci. USA 2001; 98: 1183211835.
  • 12
    Rowe AD, Bullock PR, Polkey CE, Morris RG. ‘Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions. Brain 2001; 124: 600616.
  • 13
    Shallice T. Theory of mind’ and the prefrontal cortex. Brain 2001; 124: 247248.
  • 14
    Stuss DT, Gallup GG Jr, Alexander MP. The frontal lobes are necessary for ‘theory of mind’. Brain 2001; 124: 279286.
  • 15
    Goel V, Grafman J, Sadato N, Hallett M. Modeling other minds. Neuroreport 1995; 6: 17411746.
  • 16
    Fletcher PC, Happe F, Frith U et al. Other minds in the brain: a functional imaging study of ‘theory of mind’ in story comprehension. Cognition 1995; 57: 109128.
  • 17
    Gallagher HL, Happe F, Brunswick N, Fletcher PC, Frith U, Frith CD. Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 2000; 38: 1121.
  • 18
    Castelli F, Happe F, Frith U, Frith C. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 2000; 12: 314325.
  • 19
    Gallagher HL, Jack AI, Roepstorff A, Frith CD. Imaging the intentional stance in a competitive game. Neuroimage 2002; 16: 814821.
  • 20
    Gopnik A, Slaughter V. Young children's understanding of changes in their mental states. Child Dev. 1991; 62: 98110.
  • 21
    Wimmer H, Haiti M. Against the Cartesian view on mind: young children's difficulty with own false beliefs. Br. J. Dev. Psychol. 1991; 9: 125138.
  • 22
    Wimmer H, Perner J. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition 1983; 13: 103128.
  • 23
    Perner J, Wimmer H. ‘Joseph thinks that Mary thinks that.’ Attribution of second-order beliefs by 5- to 10-year-old children. J. Exp. Psychol. 1985; 39: 437471.
  • 24
    Thompson JL, Pogue-Geile MF, Grace AA. Developmental pathology, dopamine, and stress: a model for the age of onset of schizophrenia symptoms. Schizophr Bull. 2004; 30: 875900.
  • 25
    Segalowitz SJ, Davies PL. Charting the maturation of the frontal lobe: an electrophysiological strategy. Brain Cogn. 2004; 55: 116133.
  • 26
    Giedd JN, Blumenthal J, Jeffries NO et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 1999; 2: 861863.
  • 27
    Gogtay N, Giedd JN, Lusk L et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. USA 2004; 101: 81748179.
  • 28
    Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat. Neurosci. 2003; 6: 309315.
  • 29
    Sowell ER, Thompson PM, Holmes CJ, Batth R, Jernigan TL, Toga AW. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage 1999; 9: 587597.
  • 30
    Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a ‘theory of mind’? Cognition 1985; 21: 3746.
  • 31
    Perner J, Frith U, Leslie AM, Leekam SR. Exploration of the autistic child's theory of mind: knowledge, belief, and communication. Child Dev. 1989; 60: 688700.
  • 32
    Sullivan K, Zaitchik D, Tager-Flusberg H. Preschoolers can attribute second-order beliefs. Dev. Psychol. 1994; 30: 395402.
  • 33
    Koike T, Fujino H. Assessment Software for Children: The Animation Version of ‘Theory of Mind’ Test. DIK, Tokyo, 2002 (in Japanese).
  • 34
    Abell F, Happé F, Frith U. Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. J. Cogn. Dev. 2000; 15: 120.
  • 35
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 1990; 87: 98689872.
  • 36
    Ogawa S, Tank DW, Menon R et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 1992; 89: 59515955.
  • 37
    Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, New York, 1988.
  • 38
    Friston KJ, Holmes AP, Worsley KJ. How many subjects constitute a study? Neuroimage 1999; 10: 15.
  • 39
    Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 12331239.
  • 40
    Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 2000; 11: 157166.
  • 41
    Calarge C, Andreasen NC, O'Leary DS. Visualizing how one brain understands another: a PET study of theory of mind. Am. J. Psychiatry 2003; 160: 19541964.
  • 42
    Schultz RT, Grelotti DJ, Klin A et al. The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003; 358: 415427.
  • 43
    Den Ouden HE, Frith U, Frith C, Blakemore SJ. Thinking about intentions. Neuroimage 2005; 28: 787796.
  • 44
    Steele JD, Lawrie SM. Segregation of cognitive and emotional function in the prefrontal cortex: a stereotactic meta-analysis. Neuroimage 2004; 21: 868875.
  • 45
    Mitchell JP, Banaji MR, Macrae CN. The link between social cognition and self-referential thought in the medial prefrontal cortex. J. Cogn. Neurosci. 2005; 17: 13061315.
  • 46
    Mitchell JP, Heatherton TF, Macrae CN. Distinct neural systems subserve person and object knowledge. Proc. Natl Acad. Sci. USA 2002; 99: 1523815243.
  • 47
    Mitchell JP, Macrae CN, Banaji MR. Encoding-specific effects of social cognition on the neural correlates of subsequent memory. J. Neurosci. 2004; 24: 49124917.
  • 48
    Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 2001; 98: 42594264.
  • 49
    Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP. Neural correlates of self-reflection. Brain 2002; 125: 18081814.
  • 50
    Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 2002; 14: 785794.
  • 51
    Macrae CN, Moran JM, Heatherton TF, Banfield JF, Kelley WM. Medial prefrontal activity predicts memory for self. Cereb. Cortex. 2004; 14: 647654.
  • 52
    Schmitz TW, Kawahara-Baccus TN, Johnson SC. Metacognitive evaluation, self-relevance, and the right prefrontal cortex. Neuroimage 2004; 22: 941947.
  • 53
    Vogeley K, May M, Ritzl A, Falkai P, Zilles K, Fink GR. Neural correlates of first-person perspective as one constituent of human self-consciousness. J. Cogn. Neurosci. 2004; 16: 817827.
  • 54
    Zysset S, Huber O, Ferstl E, Von Cramon DY. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 2002; 15: 983991.
  • 55
    Anderson VA, Anderson P, Northam E, Jacobs R, Catroppa C. Development of executive functions through late childhood and adolescence in an Australian sample. Dev. Neuropsychol. 2001; 20: 385406.
  • 56
    Shaw P, Greenstein D, Lerch J et al. Intellectual ability and cortical development in children and adolescents. Nature 2006; 440: 676679.
  • 57
    Shaw P, Lawrence EJ, Radbourne C, Bramham J, Polkey CE, David AS. The impact of early and late damage to the human amygdala on ‘theory of mind’ reasoning. Brain 2004; 127: 15351548.
  • 58
    Calvert GA, Martin A, Chao LL. Crossmodal processing in the human brain: insights from functional neuroimaging studies. Semantic memory and the brain: structure and processes. Curr. Opin. Neurobiol. 2001; 11: 194201.
  • 59
    Martin A, Chao LL. Semantic memory and the brain: structure and processes. Curr. Opin. Neurobiol. 2001; 11: 194201.
  • 60
    Mesulam MM. From sensation to cognition. Brain 1998; 121 (Part 6): 10131052.
  • 61
    Giese MA, Poggio T. Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 2003; 4: 179192.
  • 62
    Jellema T, Baker CI, Wicker B, Perrett DI. Neural representation for the perception of the intentionality of actions. Brain Cogn. 2000; 44: 280302.
  • 63
    Perrett DI, Harries MH, Bevan R et al. Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 1989; 146: 87113.
  • 64
    Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 2000; 4: 267278.
  • 65
    Pageler NM, Menon V, Merin NM, Eliez S, Brown WE, Reiss AL. Effect of head orientation on gaze processing in fusiform gyrus and superior temporal sulcus. Neuroimage 2003; 20: 318329.
  • 66
    Puce A, Allison T, Bentin S, Gore JC, McCarthy G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 1998; 18: 21882199.
  • 67
    Wicker B, Michel F, Henaff MA, Decety J. Brain regions involved in the perception of gaze: a PET study. Neuroimage 1998; 8: 221227.
  • 68
    Butterworth G, Jarrett N. What minds have in common is space-spatial mechanisms serving joint visual-attention in infancy. Br. J. Dev. Psychol. 1991; 9: 5572.
  • 69
    Carpenter M, Nagell K, Tomasello M. Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monogr. Soc. Res. Child Dev. 1998; 634: ivi, 1–143.