SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Braak H, Braak E. Evolution of the neuropathology of Alzheimer's disease. Acta Neurol. Scand. Suppl. 1996; 165: 312.
  • 2
    Chetelat G, Baron JC. Early diagnosis of Alzheimer's disease: Contribution of structural neuroimaging. NeuroImage 2003; 18: 525541.
  • 3
    Du AT, Schuff N, Kramer JH et al. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 2004; 62: 422427.
  • 4
    Ashburner J, Friston KJ. Voxel-based morphometry: The methods. NeuroImage. 2000; 11: 805821.
  • 5
    Teipel SJ, Meindl T, Grinberg L et al. Novel MRI techniques in the assessment of dementia. Eur. J. Nucl. Med. Mol. Imaging 2008; 35 (Suppl. 1): S58S69.
  • 6
    Testa C, Laakso MP, Sabattoli F et al. A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. J. Magn. Reson. Imaging 2004; 19: 274282.
  • 7
    Matsuda H. Role of neuroimaging in Alzheimer's disease, with emphasis on brain perfusion SPECT. J. Nucl. Med. 2007; 48: 12891300.
  • 8
    Matsuda H. The role of neuroimaging in mild cognitive impairment. Neuropathology 2007; 27: 570577.
  • 9
    Hirata Y, Matsuda H, Nemoto K et al. Voxel-based morphometry to discriminate early Alzheimer's disease from controls. Neurosci. Lett. 2005; 382: 269274.
  • 10
    Takeuchi R, Yonekura Y, Katayama S et al. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxie region of interest template: Validation using magnetic resonance imaging-technical note. Neurol. Med. Chir. (Tokyo) 2003; 43: 153162.
  • 11
    Kobayashi S, Tateno M, Utsumi K et al. Quantitative analysis of brain perfusion SPECT in Alzheimer's disease using a fully automated regional cerebral blood flow quantification software, 3DSRT. J. Neurol. Sci. 2008; 264: 2733.
  • 12
    Meguro K, Blaizot X, Kondoh Y et al. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesion of the entorhinal and perirhinal cortices in the non-human primate as shown by PET: Implications for Alzheimer's disease. Brain 1999; 122: 15191531.
  • 13
    Petersen RC, Doody R, Kurz A et al. Current concepts in mild cognitive impairment. Arch. Neurol. 2001; 58: 19851992.
  • 14
    World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. World Health Organization, Geneva, 1993.
  • 15
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. (DSM-IV). American Psychiatric Association, Washington, DC, 1994; 123163.
  • 16
    McKhann G, Drachman D, Folstein M et al. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984; 34: 939944.
  • 17
    Petersen RC, Smith GE, Waring SC et al. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999; 56: 303308.
  • 18
    Imsi Y, Hasegawa K. The Revised Hasegawa's Dementia Scale (HDS-R): Evaluation of its usefulness as a screening test for dementia. J. Hong Kong Coll. Psychiatr. 1994; 4: 2024.
  • 19
    Wechsler D. WAIS-R Manual. Psychological Corporation, San Antonio, 1981.
  • 20
    Wechsler D. Wechsler Memory Scale–Revised Manual. Psychological Corporation, San Antonio, TX, 1987.
  • 21
    Takeuchi R, Sengoku T, Matsumura K. Usefulness of fully automated constant ROI analysis software for the brain: 3DSRT and FineSRT. Radiat. Med. 2006; 24: 538544.
  • 22
    Van Hoesen GW, Augustinack JC, Eierking J et al. The parahippocampal gyrus in Alzheimer's disease: Clinical and preclinical neuroanatomical correlates. Ann. N. Y. Acad. Sci. 2000; 911: 254274.
  • 23
    Burwell RD. The parahippocampal region: Corticocortical connectivity. Ann. N. Y. Acad. Sci. 2000; 911: 2542.
  • 24
    Papez JW. A proposed mechanism for emotion. Arch. Neurol. Psychiatry 1937; 38: 725743.
  • 25
    Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus: Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev. 2002; 39: 107140.
  • 26
    Burwell RD, Amaral DG. Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex. J. Comp. Neurol. 1998; 391: 293321.
  • 27
    Schmahmann JD. Disorder of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 2004; 16: 367378.
  • 28
    Ramnani N. The primate cortico-cerebellar system: Anatomy and function. Nat Rev. Neurosci. 2006; 7: 511522.
  • 29
    Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J. Comp. Neurol. 1993; 337: 94112.
  • 30
    Mosconi L, Pupi A, De Cristofaro MT et al. Functional interactions of the entorhinal cortex: An18F-FDG PET study on normal aging and Alzheimer's disease. J. Nucl. Med. 2004; 45: 382392.
  • 31
    Hirao K, Ohnishi T, Matsuda H et al. Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl. Med. Commun. 2006; 27: 151156.
  • 32
    Chetelat G, Landeau B, Eustache F et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. NeuroImage 2005; 27: 934946.
  • 33
    Bozzali M, Filippi M, Magnani G et al. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology 2006; 67: 453460.
  • 34
    Karas G, Sluimer J, Goekoop R et al. Amnestic mild cognitive impairment: Structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR 2008; 29: 944949.