• 1
    Foundation for Promotion of Cancer Research. Cancer Statistics in Japan. Tokyo: Foundation for Promotion of Cancer Research, 2006.
  • 2
    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. New York: Oxford University Press, 2007.
  • 3
    Nishino T, Okamoto K, Kawaguchi Y et al. Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: Identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J Biol Chem 2005; 280: 24 888–94.
  • 4
    Matsuno K, Yamada H, Iwata K et al. Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice. Circulation 2005; 112: 267785.
  • 5
    Lambeth J. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 1819.
  • 6
    Paffenholz R, Bergstrom R, Pasutto F et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 2004; 18: 48691.
  • 7
    Kuroda J, Nakagawa K, Yamasaki T et al. The superoxide-producing NAD (P) H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 2005; 10: 113951.
  • 8
    Banfi B, Tirone F, Durussel I et al. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 2004; 279: 18 583–91.
  • 9
    Daiyasu H, Toh H. Molecular evolution of the myeloperoxidase family. J Mol Evol 2000; 51: 43345.
  • 10
    Moreno J, Bikker H, Kempers M et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 2002; 347: 95102.
  • 11
    Sono M. The roles of superoxide anion and methylene blue in the reductive activation of indoleamine 2,3-dioxygenase byascorbic acid or by xanthine oxidase-hypoxanthine. J Biol Chem 1989; 264: 161622.
  • 12
    Brady F, Forman H, Feigelson P. The role of superoxide and hydroperoxide in the reductive activation of tryptophan-2,3-dioxygenase. J Biol Chem 1971; 246: 711924.
  • 13
    Mira L, Maia L, Barreira L, Manso C. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 1995; 318: 538.
  • 14
    Enroth C, Eger B, Okamoto K, Nishino T, Pai E. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc Natl Acad Sci USA 2000; 97: 10 723–8.
  • 15
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 15963.
  • 16
    Kawahara T, Kuwano Y, Teshima-Kondo S et al. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 2004; 172: 30518.
  • 17
    Heistad D. Unstable coronary-artery plaques. N Engl J Med 2003; 349: 22857.
  • 18
    Pietrangelo A, Montosi G, Garuti C et al. Iron-induced oxidant stress in nonparenchymal liver cells: Mitochondrial derangement and fibrosis in acutely iron-dosed gerbils and its prevention by silybin. J Bioenerg Biomembr 2002; 34: 6779.
  • 19
    Takano H, Yanagisawa R, Ichinose T et al. Diesel exhaust particles enhance lung injury related to bacterial endotoxin through expression of proinflammatory cytokines, chemokines, and intercellular adhesion molecule-1. Am J Respir Crit Care Med 2002; 165: 132935.
  • 20
    Imamura Y, Noda S, Hashizume K et al. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: A model of age-related macular degeneration. Proc Natl Acad Sci USA 2006; 103:11 282–7.
  • 21
    Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman P, Ishii N. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 2005; 65: 2039.
  • 22
    Lee S, Lee R, Fraser A, Kamath R, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003; 33:4048.
  • 23
    Kawaguchi-Niida M, Shibata N, Morikawa S et al. Crotonaldehyde accumulates in glial cells of Alzheimer's disease brain. Acta Neuropathol (Berl) 2006; 111: 4229.
  • 24
    Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H. Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med 1998; 158: 31114.
  • 25
    Takabe W, Kanai Y, Chairoungdua A et al. Lysophosphatidylcholine enhances cytokine production of endothelial cells via induction of 1-type amino acid transporter 1 and cell surface antigen 4F2. Arterioscler Thromb Vasc Biol 2004; 24: 164045.
  • 26
    Antille C, Sorg O, Lubbe J, Saurat J. Decreased oxidative state in non-lesional skin of atopic dermatitis. Dermatology 2002; 204: 6971.
  • 27
    Giordano F. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005; 115: 500508.
  • 28
    Lou M. Redox regulation in the lens. Prog Retin Eye Res 2003; 22: 65782.
  • 29
    Goswami S, Sheets N, Zavadil J et al. Spectrum and range of oxidative stress responses of human lens epithelial cells to H2O2 insult. Invest Ophthalmol Vis Sci 2003; 44: 208493.
  • 30
    Barnes P. Reduced histone deacetylase in COPD: Clinical implications. Chest 2006; 129: 1515.
  • 31
    Rao N, Thaete L, Delmage J, Sevanian A. Superoxide dismutase in ocular structures. Invest Ophthalmol Vis Sci 1985; 26: 177881.
  • 32
    Ihara Y, Toyokuni S, Uchida K et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 1999; 48: 92732.
  • 33
    Asaba K, Tojo A, Onozato M et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 2005; 67: 189098.
  • 34
    Inagi R, Yamamoto Y, Nangaku M et al. A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 2006; 55: 35666.
  • 35
    Chen B, Jiang D, Tang L. Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sci 2006; 79: 104048.
  • 36
    Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54: 161525.
  • 37
    Murata M, Nishimura T, Chen F, Kawanishi S. Oxidative DNA damage induced by hair dye components ortho-phenylenediamines and the enhancement by superoxide dismutase. Mutat Res 2006; 607: 18491.
  • 38
    Aoi W, Naito Y, Takanami Y et al. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med 2004; 37: 48087.
  • 39
    Houglum K, Ramm G, Crawford D, Witztum J, Powell L, Chojkier M. Excess iron induces hepatic oxidative stress and transforming growth factor beta1 in genetic hemochromatosis. Hepatology 1997; 26: 60510.
  • 40
    Kondo S, Shimizu M, Urushihara M et al. Addition of the antioxidant probucol to angiotensin II type I receptor antagonist arrests progressive mesangioproliferative glomerulonephritis in the rat. J Am Soc Nephrol 2006; 17: 78394.
  • 41
    Ide T, Tsutsui H, Hayashidani S et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 2001; 88: 52935.
  • 42
    Naito Y, Yoshikawa T. Carcinogenesis and chemoprevention in gastric cancer associated with helicobacter pylori infection: Role of oxidants and antioxidants. J Clin Biochem Nutr 2005; 36: 3749.
  • 43
    Furutani T, Hino K, Okuda M et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2006; 130: 208798.
  • 44
    Loscalzo J. Homocysteine trials: Clear outcomes for complex reasons. N Engl J Med 2006; 354: 162932.
  • 45
    Christofidou-Solomidou M, Muzykantov V. Antioxidant strategies in respiratory medicine. Treat Respir Med 2006; 5: 4778.
  • 46
    Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 2006; 63: 41434.
  • 47
    Hoshino T, Nakamura H, Okamoto M et al. Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am J Respir Crit Care Med 2003; 168: 107583.
  • 48
    Miyachi Y, Yoshioka A, Imamura S, Niwa Y. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol 1986; 86: 44953.
  • 49
    Koutroubakis I, Malliaraki N, Dimoulios P, Karmiris K, Castanas E, Kouroumalis E. Decreased total and corrected antioxidant capacity in patients with inflammatory bowel disease. Dig Dis Sci 2004; 49: 14337.
  • 50
    Nakamura H, Tamura S, Watanabe I, Iwasaki T, Yodoi J. Enhanced resistance of thioredoxin-transgenic mice against influenza virus-induced pneumonia. Immunol Lett 2002; 82: 16570.
  • 51
    Deng Y, Xiang H, Chang Q, Li C. Evaluation by high-resolution ultrasonography of endothelial function in brachial artery after Kawasaki disease and the effects of intravenous administration of vitamin C. Circ J 2002; 66: 90812.
  • 52
    Kobayashi T, Sato Y, Yamamoto S et al. Augmentation of heme oxygenase-1 expression in the graft immediately after implantation in adult living-donor liver transplantation. Transplantation 2005; 79: 97780.
  • 53
    Kawashima M, Bando T, Nakamura T et al. Cytoprotective effects of nitroglycerin in ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2000; 161: 93543.
  • 54
    Usuki F, Yasutake A, Umehara F et al. In vivo protection of a water-soluble derivative of vitamin E, Trolox, against methylmercury-intoxication in the rat. Neurosci Lett 2001; 304: 199203.
  • 55
    Nimata M, Okabe T, Hattori M, Yuan Z, Shioji K, Kishimoto C. MCI-186 (edaravone), a novel free radical scavenger, protects against acute autoimmune myocarditis in rats. Am J Physiol Heart Circ Physiol 2005; 289: H251418.
  • 56
    Ikejima K, Okumura K, Lang T et al. The role of leptin in progression of non-alcoholic fatty liver disease. Hepatol Res 2005; 33: 1514.
  • 57
    Rantanen T, Rasanen J, Sihvo E, Ahotupa M, Farkkila M, Salo J. The impact of antireflux surgery on oxidative stress of esophageal mucosa caused by gastroesophageal reflux disease: 4-yr follow-up study. Am J Gastroenterol 2006; 101: 2228.
    Direct Link:
  • 58
    Ohashi S, Nishio A, Nakamura H et al. Clinical significance of serum thioredoxin 1 levels in patients with acute pancreatitis. Pancreas 2006; 32: 26470.
  • 59
    Tabner B, Turnbull S, El-Agnaf O, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radic Biol Med 2002; 32: 107683.
  • 60
    Komatsu T, Lee M, Miyagi A et al. Reactive oxygen species generation in gingival fibroblasts of Down syndrome patients detected by electron spin resonance spectroscopy. Redox Rep 2006; 11: 717.
  • 61
    Peus D, Beyerle A, Rittner H et al. Anti-psoriatic drug anthralin activates JNK via lipid peroxidation: Mononuclear cells are more sensitive than keratinocytes. J Invest Dermatol 2000; 114: 68892.
  • 62
    Anzai K, Ueno M, Yoshida A et al. Comparison of stable nitroxide, 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyls, with respect to protection from radiation, prevention of DNA damage, and distribution in mice. Free Radic Biol Med 2006; 40: 117078.
  • 63
    Morimoto H, Nakao K, Fukuoka K et al. Long-term use of vitamin E-coated polysulfone membrane reduces oxidative stress markers in haemodialysis patients. Nephrol Dial Transplant 2005; 20: 277582.
  • 64
    Cervantes-Munguia R, Espinosa-Lopez L, Gomez-Contreras P, Hernandez-Flores G, Dominguez-Rodriguez J, Bravo-Cuellar A. [Retinopathy of prematurity and oxidative stress]. An Pediatr (Barc) 2006; 64: 12631.
  • 65
    Wang H, Olivero W, Lanzino G et al. Rapid and selective cerebral hypothermia achieved using a cooling helmet. J Neurosurg 2004; 100: 2727.
  • 66
    Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 2004; 6: 56170.
  • 67
    Iuchi K, Ichimiya A, Akashi A et al. Non-Hodgkin's lymphoma of the pleural cavity developing from long-standing pyothorax. Cancer 1987; 60: 17715.
  • 68
    Gilmour P, Brown D, Beswick P, MacNee W, Rahman I, Donaldson K. Free radical activity of industrial fibers: Role of iron in oxidative stress and activation of transcription factors. Environ Health Perspect 1997; 105: 131317.
  • 69
    Hodgson J, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg 2000; 44: 565601.
  • 70
    Uemura N, Okamoto S, Yamamoto S et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 7849.
  • 71
    Collins R, Feldman M, Fordtran J. Colon cancer, dysplasia, and surveillance in patients with ulcerative colitis. A critical review. N Engl J Med 1987; 316: 16548.
  • 72
    Eaden J, Abrams K, Mayberry J. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001; 48: 52635.
  • 73
    Toyokuni S. Iron-induced carcinogenesis: The role of redox regulation. Free Radic Biol Med 1996; 20: 55366.
  • 74
    Elmberg M, Hultcrantz R, Ekbom A et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology 2003; 125: 173341.
  • 75
    Grodstein F, Speizer F, Hunter D. A prospective study of incident squamous cell carcinoma of the skin in the nurses' health study. J Natl Cancer Inst 1995; 87: 10616.
  • 76
    Preston D, Kusumi S, Tomonaga M et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 1994; 137: S6897.
  • 77
    Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc 1894; 65: 899910.
  • 78
    Harman D. Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging, and disease process. In: JohnsonJEJr, Walford R, Harman D, MiquelsJ, eds. Free Radicals, Aging, and Degenerative Diseases. New York: Liss, 1986; 349.
  • 79
    McCord JM, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 604955.
  • 80
    Stadtman ER. Protein oxidation and aging. Science 1992; 257: 122024.
  • 81
    Uchida K. Protein-bound 4-hydroxy-2-nonenal as a marker of oxidative stress. J Clin Biochem Nutr 2005; 36: 110.
  • 82
    Steenken S. Purine bases, nucleosides, and nucleotides: Aqueous solution redox chemistry and transformation reactions of their radical reactions and e and ·OH adducts. Chem Rev 1989; 89: 50320.
  • 83
    Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 1997; 387: 14763.
  • 84
    Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 1991; 10: 22542.
  • 85
    Cadenas E, Sies H. Oxidative stress: Excited oxygen species and enzyme activity. Adv Enzyme Regul 1985; 23: 21737.
  • 86
    Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett 1995; 358: 13.
  • 87
    Suzuki Y, Forman H, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997; 22: 26985.
  • 88
    Mitra S, Boldogh I, Izumi T, Hazra T. Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen 2001; 38: 18090.
  • 89
    Nakabeppu Y, Tsuchimoto D, Furuichi M, Sakumi K. The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death. Free Radic Res 2004; 38: 4239.
  • 90
    Beckman J, Koppenol W. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 1996; 271: C142437.
  • 91
    Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 1999; 49: 91102.
  • 92
    Humphries K, Szweda P, Szweda L. Aging: A shift from redox regulation to oxidative damage. Free Radic Res 2006; 40: 123943.
  • 93
    Hopkins FG, Dixon M. On glutathione. II. A thermostable oxidation-reduction system. J Biol Chem 1922; 54: 52763.
  • 94
    Tagaya Y, Okada M, Sugie K et al. IL-2 receptor (p55)/Tac-inducing factor. Purification and characterization of adult T cell leukemia-derived factor. J Immunol 1988; 140: 261420.
  • 95
    Sen C, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10: 70920.
  • 96
    Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997; 15: 35169.
  • 97
    Nishiyama A, Matsui M, Iwata S et al. Identification of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 1999; 274: 21 645–50.
  • 98
    Nishinaka Y, Nishiyama A, Masutani H et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: Implications for adult T-cell leukemia leukemogenesis. Cancer Res 2004; 64: 128792.
  • 99
    Ahsan M, Masutani H, Yamaguchi Y et al. Loss of interleukin-2-dependency in HTLV-I-infected T cells on gene silencing of thioredoxin-binding protein-2. Oncogene 2005; 25: 218191.
  • 100
    Ikarashi M, Takahashi Y, Ishii Y, Nagata T, Asai S, Ishikawa K. Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease. Anticancer Res 2002; 22: 40458.
  • 101
    Han S, Jeon J, Ju H et al. VDUP1 upregulated by TGF-β1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 2003; 22: 403546.
  • 102
    Dutta KKN, Ishinaka Y, Masutani H et al. Thioredoxin-binding protein-2 is a target gene in oxidative stress-induced renal carcinogenesis. Lab Invest 2005; 85: 798807.
  • 103
    Goldberg S, Miele M, Hatta N et al. Melanoma metastasis suppression by chromosome 6: Evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 2003; 63: 43240.
  • 104
    Bodnar J, Chatterjee A, Castellani L et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 2002; 30: 11016.
  • 105
    Hui T, Sheth S, Diffley J et al. Mice lacking thioredoxin interacting protein provide evidence linking cellular redox state to appropriate response to nutritional signals. J Biol Chem 2004; 279: 24 387–93.
  • 106
    Oka S, Liu W, Masutani H et al. Impaired fatty acid utilization in thioredoxin binding protein-2 (TBP-2) -deficient mice: A unique animal model of Reye syndrome. FASEB J 2005; 147: 73343.
  • 107
    Hockel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 26676.
  • 108
    Maruyama R, Aoki F, Toyota M et al. Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res 2006; 66: 457483.
  • 109
    Itoh K, Chiba T, Takahashi S et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 31322.
  • 110
    Ishii T, Itoh K, Takahashi S et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 2000; 275: 16 023–9.
  • 111
    Itoh K, Wakabayashi N, Katoh Y et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13: 7686.
  • 112
    Wakabayashi N, Dinkova-Kostova A, Holtzclaw W et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 2004; 101: 204045.
  • 113
    Kobayashi A, Kang M, Okawa H et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004; 24: 713039.
  • 114
    Steinberg S. Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J 2004; 384: 44959.
  • 115
    Sun X, Wu F, Datta R, Kharbanda S, Kufe D. Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. J Biol Chem 2000; 275: 747073.
  • 116
    Wang X, McCullough K, Franke T, Holbrook N. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 2000; 275: 14 624–31.
  • 117
    Takeda K, Matsuzawa A, Nishitoh H, Ichijo H. Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 2003; 28: 239.
  • 118
    Tobiume K, Matsuzawa A, Takahashi T et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2001; 2: 2228.
  • 119
    Noguchi T, Takeda K, Matsuzawa A et al. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J Biol Chem 2005; 280: 37 033–40.
  • 120
    Matsuzawa A, Saegusa K, Noguchi T et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 2005; 6: 58792.
  • 121
    Bienert G, Schjoerring J, Jahn T. Membrane transport of hydrogen peroxide. Biochim Biophys Acta 2006; 1758: 9941003.
  • 122
    Mitsushita J, Lambeth J, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 2004; 64: 358085.
  • 123
    Mahadev K, Motoshima H, Wu X et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004; 24: 184454.
  • 124
    Azzi A, Ricciarelli R, Zingg J. Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Lett 2002; 519: 810.
  • 125
    Munteanu A, Zingg J, Ogru E et al. Modulation of cell proliferation and gene expression by alpha-tocopheryl phosphates: Relevance to atherosclerosis and inflammation. Biochem Biophys Res Commun 2004; 318: 31116.
  • 126
    Lee W, Akatsuka S, Shirase T et al. alpha-Tocopherol induces calnexin in renal tubular cells: Another protective mechanism against free radical-induced cellular damage. Arch Biochem Biophys 2006; 453: 16878.
  • 127
    Palmer R, Ferrige A, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 5246.
  • 128
    Stamler J, Lamas S, Fang F. Nitrosylation: The prototypic redox-based signaling mechanism. Cell 2001; 106: 67583.
  • 129
    Yasinska I, Sumbayev V. S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 andstimulates its transcriptional activity. FEBS Lett 2003; 549: 1059.
  • 130
    Hara M, Agrawal N, Kim S et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 2005; 7: 66574.
  • 131
    Matsushita K, Morrell C, Cambien B et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 2003; 115: 13950.
  • 132
    Minetti M, Mallozzi C, Di Stasi A. Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med 2002; 33: 74454.
  • 133
    Otterbein L, Bach F, Alam J et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6: 4228.
  • 134
    Suematsu M, Goda N, Sano T et al. Carbon monoxide: An endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 1995; 96: 24317.
  • 135
    Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997; 237: 52731.
  • 136
    Akatsuka S, Aung TT, Dutta KK et al. Contrasting genome-wide distribution of 8-hydroxyguanine and acrolein-modified adenine during oxidative stress-induced renal carcinogenesis. Am J Pathol 2006; 169: 132842.
  • 137
    Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 2003; 417: 311.
  • 138
    Nakabeppu Y. Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucleic Acid Res Mol Biol 2001; 68: 7594.
  • 139
    Vogelstein B, Kinzler KW. The Genetic Basis of Human Cancer. New York: McGraw-Hill, 1998.
  • 140
    Nishiyama Y, Suwa H, Okamoto K, Fukumoto M, Hiai H, Toyokuni S. Low incidence of point mutations in H-, K- and N-ras oncogenes and p53 tumor suppressor gene in renal cell carcinoma and peritoneal mesothelioma of Wistar rats induced by ferric nitrilotriacetate. Jpn J Cancer Res 1995; 86: 115058.
  • 141
    Toyokuni S, Mori T, Dizdaroglu M. DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer 1994; 57: 1238.
  • 142
    Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 1994; 91: 261620.
  • 143
    Toyokuni S, Luo XP, Tanaka T, Uchida K, Hiai H, Lehotay DC. Induction of a wide range of C2-12 aldehydes and C7-12 acyloins in the kidney of Wistar rats after treatment with a renal carcinogen, ferric nitrilotriacetate. Free Radic Biol Med 1997; 22: 101927.
  • 144
    Ozeki M, Miyagawa-Hayashino A, Akatsuka S et al. Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 827: 11926.
  • 145
    Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. Sunderland, MA, USA: Sinauer Associates, 1998.
  • 146
    Tanaka T, Iwasa Y, Kondo S, Hiai H, Toyokuni S. High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 1999; 18: 37937.
  • 147
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 82927.
  • 148
    Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 1995; 15: 26828.
  • 149
    Hiroyasu M, Ozeki M, Kohda H et al. Specific allelic loss of p16INK4A tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis. Am J Pathol 2002; 160: 41924.
  • 150
    Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 1999; 453: 3658.
  • 151
    Von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000; 28: 6474.
  • 152
    Toyokuni S, Tanaka T, Hattori Y et al. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: Its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 1997; 76: 36574.
  • 153
    Kawai Y, Furuhata A, Toyokuni S, Aratani Y, Uchida K. Formation of acrolein-derived 2′-deoxyadenosine adduct in an iron-induced carcinogenesis model. J Biol Chem 2003; 278: 50 346–54.
  • 154
    Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2: 292301.
  • 155
    Tanabe H, Muller S, Neusser M et al. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 2002; 99: 44249.
  • 156
    Parada L, McQueen P, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol 2004; 5: R44.
  • 157
    Meaburn KJ, Misteli T. Chromosome territories. Nature 2007; 445: 37981.
  • 158
    Dietrich L, Ungermann C. On the mechanism of protein palmitoylation. EMBO Rep 2004; 5: 10537.
  • 159
    Fratelli M, Demol H, Puype M et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 2002; 99: 350510.
  • 160
    Ishii T, Uchida K. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2. Chem Res Toxicol 2004; 17: 131322.
  • 161
    Levine R, Williams J, Stadtman E, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 1994; 233: 34657.
  • 162
    Oh-Ishi M, Ueno T, Maeda T. Proteomic method detects oxidatively induced protein carbonyls in muscles of a diabetes model Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Free Radic Biol Med 2003; 34: 1122.
  • 163
    Toyokuni S, Miyake N, Hiai H et al. The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 1995; 359: 18991.
  • 164
    Gayarre J, Sanchez D, Sanchez-Gomez F, Terron M, Llorca O, Perez-Sala D. Addition of electrophilic lipids to actin alters filament structure. Biochem Biophys Res Commun 2006; 349: 138793.
  • 165
    Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K. 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 1999; 274: 23 787–93.
  • 166
    Montine T, Amarnath V, Martin M, Strittmatter W, Graham D. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol 1996; 148: 8993.
  • 167
    Montine K, Olson S, Amarnath V, Whetsell W, Graham D, Montine T. Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer's disease is associated with inheritance of APOE4. Am J Pathol 1997; 150: 43743.
  • 168
    Humphries K, Szweda L. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: Reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998; 37: 15 835–41.
  • 169
    Lauderback C, Hackett J, Huang F et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: The role of Abeta1-42. J Neurochem 2001; 78: 41316.
  • 170
    Ji C, Kozak K, Marnett L. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 2001; 276: 18 223–8.
  • 171
    Toyokuni S, Yamada S, Kashima M et al. Serum 4-hydroxy-2-nonenal-modified albumin is elevated in patients with type 2 diabetes mellitus. Antioxid Redox Signal 2000; 2:6815.
  • 172
    Perluigi M, Fai Poon H, Hensley K et al. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice: A model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005; 38: 96068.
  • 173
    Tanito M, Haniu H, Elliott M, Singh A, Matsumoto H, Anderson R. Identification of 4-hydroxynonenal-modified retinal proteins induced by photooxidative stress prior to retinal degeneration. Free Radic Biol Med 2006; 41: 184759.
  • 174
    Carbone D, Doorn J, Kiebler Z, Ickes B, Petersen D. Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease. J Pharmacol Exp Ther 2005; 315: 815.
  • 175
    Eddy S. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001; 2: 91929.
  • 176
    Sevignani C, Calin G, Siracusa L, Croce C. Mammalian microRNAs: A small world for fine-tuning gene expression. Mamm Genome 2006; 17: 189202.
  • 177
    Mason R. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic Biol Med 2004; 36: 121423.
  • 178
    Ramirez D, Mejiba S, Mason R. Immuno-spin trapping of DNA radicals. Nat Methods 2006; 3: 1237.