SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Hajdu SI. Soft tissue sarcomas. Cancer 2007; 109: 1697704.
  • 2
    Virchow R. Die Cellularpathologie in ihrer Begrundung auf physiologische und pathologische Geweblehre. Berlin: August Hirschwald, 1858.
  • 3
    Byers JM III. Rudolf Virchow: Father of cellular pathology. Am J Clin Pathol 1989; 92: S28.
  • 4
    Ewing J. Diffuse endothelioma of bone. Proc N Y Pathol Soc 1921; 21: 1724.
  • 5
    Ewing J. Further report of endothelial myeloma of bone. Proc N Y Pathol Soc 1924; 24: 93100.
  • 6
    Ewing J. Neoplastic Diseases: A Textbook on Tumors. Philadelphia, PA: WB Saunders, 1919.
  • 7
    Weiss SW. 44th Maude Abbott Lecture. Soft tissue sarcomas: Lessons from the past, challenges for the future. Mod Pathol 2002; 15: 7786.
  • 8
    Stout AP, Lattes R. Tumors of the Soft Tissues. Washington, DC: AFIP, 1967.
  • 9
    Enzinger FM, Weiss SW. Soft Tissue Tumors. Philadelphia, PA: Mosby, 1983.
  • 10
    Weiss SW, Goldblum JR. Enzinger and Weiss's Soft Tissue Tumors, 5th edn. Philadelphia, PA: Mosby, Elsevier, 2007.
  • 11
    Enjoji M, Hashimoto H. Pathology of soft tissue sarcomas. Selected current issues. Acta Pathol Jpn 1990; 40: 86370.
  • 12
    Enjoji M, Hashimoto H, Tsuneyoshi M, Iwasaki H. Malignant fibrous histiocytoma. A clinicopathologic study of 130 cases. Acta Pathol Jpn 1980; 30: 72741.
  • 13
    Japanese Society of Pathology. List of invited lectures. (in Japanese). Tokyo: Japanese Society of Pathology, 1996 and 2000. (Accessed 15 June 2009.) Available from: http://jsp.umin.ac.jp/meeting/lectures.html
  • 14
    Fletcher CDM, Unni KK, Mertens F. Pathology and Genetics of Tumours of Soft Tissue and Bone, World Health Organization (WHO) Classification of Tumours. Lyon: IARC Press, 2002.
  • 15
    Miettinen M. Diagnostic Soft Tissue Pathology. Philadelphia, PA: Churchill Livingstone, 2003.
  • 16
    Hirota S, Isozaki K, Moriyama Y et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279: 57780.
  • 17
    Miettinen M, Paal E, Lasota J, Sobin LH. Gastrointestinal glomus tumors: A clinicopathologic, immunohistochemical, and molecular genetic study of 32 cases. Am J Surg Pathol 2002; 26: 30111.
  • 18
    Miettinen M, Lasota J. Gastrointestinal stromal tumors: Review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006; 130: 146678.
  • 19
    Antonescu CR. The role of genetic testing in soft tissue sarcoma. Histopathology 2006; 48: 1321.
  • 20
    Riggi N, Cironi L, Suva ML, Stamenkovic I. Sarcomas genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007; 213: 420.
  • 21
    Suva ML, Cironi L, Riggi N, Stamenkovic I. Sarcomas genetics, signalling, and cellular origins. Part 2: TET-independent fusion proteins and receptor tyrosine kinase mutations. J Pathol 2007; 213: 11730.
  • 22
    Oda Y, Tsuneyoshi M. Recent advances in the molecular pathology of soft tissue sarcoma: Implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009; 100: 2008.
  • 23
    Nishio J, Althof PA, Bailey JM et al. Use of a novel FISH assay on paraffin-embedded tissues as an adjunct to diagnosis of alveolar rhabdomyosarcoma. Lab Invest 2006; 86: 54756.
  • 24
    Subramanian S, Lui WO, Lee CH et al. MicroRNA expression signature of human sarcomas. Oncogene 2008; 27: 201526.
  • 25
    Takeuchi T, Iwasaki H, Ohjimi Y et al. Renal primitive neuroectodermal tumor: An immunohistochemical and cytogenetic analysis. Pathol Int 1996; 46: 2927.
  • 26
    Takeuchi T, Iwasaki H, Ohjimi Y et al. Renal primitive neuroectodermal tumor: A morphologic, cytogenetic, and molecular analysis with the establishment of two cultured cell lines. Diagn Mol Pathol 1997; 6: 30917.
  • 27
    Barr FG, Womer RB. Molecular diagnosis of Ewing family tumors: Too many fusions . . . ? J Mol Diagn 2007; 9: 43740.
  • 28
    Wang L, Bhargava R, Zheng T et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: Identification of a novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007; 9: 498509.
  • 29
    Bridge RS, Rajaram V, Dehner LP, Pfeifer JD, Perry A. Molecular diagnosis of Ewing sarcoma/primitive neuroectodermal tumor in routinely processed tissue: A comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol 2006; 19: 18.
  • 30
    Law WJ, Cann KL, Hicks GG. TLS, EWS and TAF15: A model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006; 5: 814.
  • 31
    Enzinger FM, Lattes R, Torloni H. Histologic Typing of Soft Tissue Tumors. Geneva: World Health Organization, 1969.
  • 32
    Paulien S, Turc-Carel C, Dal Cin P et al. Myxoid liposarcoma with t(12;16) (q13;p11) contains site-specific differences in methylation patterns surrounding a zinc-finger gene mapped to the breakpoint region on chromosome 12. Cancer Res 1990; 50: 79027.
  • 33
    Aman P, Ron D, Mandahl N et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992; 5: 27885.
  • 34
    Ohjimi Y, Iwasaki H, Ishiguro M et al. Myxoid liposarcoma with t(12; 16)(q 13; p 11). Possible usefulness of chromosome analysis in a poorly differentiated sarcoma. Pathol Res Pract 1992; 188: 73641.
  • 35
    Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993; 363: 64044.
  • 36
    Kuroda M, Wang X, Sok J et al. Induction of a secreted protein by the myxoid liposarcoma oncogene. Proc Natl Acad Sci USA 1999; 96: 502530.
  • 37
    Panagopoulos I, Mertens F, Isaksson M, Mandahl N. A novel FUS/CHOP chimera in myxoid liposarcoma. Biochem Biophys Res Commun 2000; 279: 83845.
  • 38
    Hosaka T, Nakashima Y, Kusuzaki K et al. A novel type of EWS-CHOP fusion gene in two cases of myxoid liposarcoma. J Mol Diagn 2002; 4: 16471.
  • 39
    Matsui Y, Ueda T, Kubo T et al. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma. Biochem Biophys Res Commun 2006; 348: 43740.
  • 40
    Bode-Lesniewska B, Frigerio S, Exner U, Abdou MT, Moch H, Zimmermann DR. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer 2007; 46: 96171.
  • 41
    Engstrom K, Willen H, Kabjorn-Gustafsson C et al. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 2006; 168: 164253.
  • 42
    Goransson M, Andersson MK, Forni C et al. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene 2008; 28: 2708.
  • 43
    Oda Y, Yamamoto H, Takahira T et al. Frequent alteration of p16(INK4a)/p14(ARF) and p53 pathways in the round cell component of myxoid/round cell liposarcoma: p53 gene alterations and reduced p14(ARF) expression both correlate with poor prognosis. J Pathol 2005; 207: 41021.
  • 44
    Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 2006; 66: 693646.
  • 45
    Wachtel M, Dettling M, Koscielniak E et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004; 64: 553945.
  • 46
    Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7: 23345.
  • 47
    Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994; 54: 283740.
  • 48
    Murphy AJ, Bishop K, Pereira C et al. A new molecular variant of desmoplastic small round cell tumor: Significance of WT1 immunostaining in this entity. Hum Pathol 2008; 39: 176370.
  • 49
    Nishio J, Iwasaki H, Ishiguro M et al. Intra-abdominal small round cell tumour with EWS-WT1 fusion transcript in an elderly patient. Histopathology 2003; 42: 41012.
  • 50
    Nishio J, Iwasaki H, Ishiguro M et al. Establishment and characterization of a novel human desmoplastic small round cell tumor cell line, JN-DSRCT-1. Lab Invest 2002; 82: 117582.
  • 51
    Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol 1992; 16: 41116.
  • 52
    Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995; 92: 102832.
  • 53
    Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: A recurrent variant fusion in clear cell sarcoma: Association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006; 12: 535662.
  • 54
    Fujimura Y, Siddique H, Lee L, Rao VN, Reddy ES. EWS-ATF-1 chimeric protein in soft tissue clear cell sarcoma associates with CREB-binding protein and interferes with p53-mediated trans-activation function. Oncogene 2001; 20: 66539.
  • 55
    Hisaoka M, Ishida T, Kuo TT et al. Clear cell sarcoma of soft tissue: A clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 2008; 32: 45260.
  • 56
    Zucman J, Delattre O, Desmaze C et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993; 4: 3415.
  • 57
    Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan MF, Ladanyi M. Molecular diagnosis of clear cell sarcoma: Detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002; 4: 4452.
  • 58
    Antonescu CR, Dal Cin P, Nafa K et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007; 46: 105160.
  • 59
    Dunham C, Hussong J, Seiff M, Pfeifer J, Perry A. Primary intracerebral angiomatoid fibrous histiocytoma: Report of a case with a t(12;22)(q13;q12) causing type 1 fusion of the EWS and ATF-1 genes. Am J Surg Pathol 2008; 32: 47884.
  • 60
    Hallor KH, Micci F, Meis-Kindblom JM et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007; 251: 15863.
  • 61
    Rossi S, Szuhai K, Ijszenga M et al. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res 2007; 13: 73228.
  • 62
    Waters BL, Panagopoulos I, Allen EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000; 121: 10916.
  • 63
    Fletcher CD, Dal Cin P, De Wever I et al. Correlation between clinicopathological features and karyotype in spindle cell sarcomas. A report of 130 cases from the CHAMP study group. Am J Pathol 1999; 154: 18417.
  • 64
    Makhlouf HR, Ahrens W, Agarwal B et al. Synovial sarcoma of the stomach: A clinicopathologic, immunohistochemical, and molecular genetic study of 10 cases. Am J Surg Pathol 2008; 32: 27581.
  • 65
    Iwasaki H, Ishiguro M, Ohjimi Y et al. Synovial sarcoma of the prostate with t(X;18)(p11.2;q11.2). Am J Surg Pathol 1999; 23: 22026.
  • 66
    Oda Y, Sakamoto A, Saito T, Kinukawa N, Iwamoto Y, Tsuneyoshi M. Expression of hepatocyte growth factor (HGF)/scatter factor and its receptor c-MET correlates with poor prognosis in synovial sarcoma. Hum Pathol 2000; 31: 18592.
  • 67
    Kanemitsu S, Hisaoka M, Shimajiri S, Matsuyama A, Hashimoto H. Molecular detection of SS18-SSX fusion gene transcripts by cRNA in situ hybridization in synovial sarcoma using formalin-fixed, paraffin-embedded tumor tissue specimens. Diagn Mol Pathol 2007; 16: 917.
  • 68
    Skytting B, Nilsson G, Brodin B et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999; 91: 9745.
  • 69
    Nishio J, Iwasaki H, Althof PA et al. Identification of a ring chromosome with spectral karyotyping in a pleural synovial sarcoma. Cancer Genet Cytogenet 2005; 160: 1748.
  • 70
    Nishio J, Iwasaki H, Ishiguro M et al. Establishment of a new human synovial sarcoma cell line, FU-SY-1, that expresses c-Met receptor and its ligand hepatocyte growth factor. Int J Oncol 2002; 21: 1723.
  • 71
    Nishio J, Iwasaki H, Ishiguro M et al. Synovial sarcoma with a secondary chromosome change der(22)t(17;22)(q12;q12). Cancer Genet Cytogenet 2002; 137: 238.
  • 72
    Nishio J, Iwasaki H, Ishiguro M et al. Identification of SYT-SSX fusion transcripts in both epithelial and spindle cell components of biphasic synovial sarcoma in small tissue samples isolated by membrane-based laser microdissection. Virchows Arch 2001; 439: 1527.
  • 73
    Geurts van Kessel A, De Bruijn D, Hermsen L et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998; 23: 198201.
  • 74
    Lestou VS, O'Connell JX, Robichaud M et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002; 138: 1536.
  • 75
    Otsuka S, Nishijo K, Nakayama T et al. A variant of the SYT-SSX2 fusion gene in a case of synovial sarcoma. Cancer Genet Cytogenet 2006; 167: 828.
  • 76
    Torres L, Lisboa S, Cerveira N, Lopes JM, Lopes C, Teixeira MR. Cryptic chromosome rearrangement resulting in SYT-SSX2 fusion gene in a monophasic synovial sarcoma. Cancer Genet Cytogenet 2008; 187: 459.
  • 77
    Sonobe H, Takeuchi T, Liag SB et al. A new human synovial sarcoma cell line, HS-SY-3, with a truncated form of hybrid SYT/SSX1 gene. Int J Cancer 1999; 82: 45964.
  • 78
    Storlazzi CT, Mertens F, Mandahl N et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003; 37: 195200.
  • 79
    Ladanyi M, Antonescu CR, Leung DH et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: A multi-institutional retrospective study of 243 patients. Cancer Res 2002; 62: 13540.
  • 80
    Amary MF, Berisha F, Bernardi Fdel C et al. Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: Analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod Pathol 2007; 20: 48296.
  • 81
    Izumi T, Oda Y, Hasegawa T et al. Dysadherin expression as a significant prognostic factor and as a determinant of histologic features in synovial sarcoma: Special reference to its inverse relationship with E-cadherin expression. Am J Surg Pathol 2007; 31: 8594.
  • 82
    Saito T, Nagai M, Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: A potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res 2006; 66: 691927.
  • 83
    Ishida M, Miyamoto M, Naitoh S et al. The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(x;18) synovial sarcoma. Mol Cell Biol 2007; 27: 134855.
  • 84
    Pedeutour F, Simon MP, Minoletti F et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res 1995; 55: 2400403.
  • 85
    Naeem R, Lux ML, Huang SF, Naber SP, Corson JM, Fletcher JA. Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 1995; 147: 15538.
  • 86
    Iwasaki H, Ohjimi Y, Ishiguro M et al. Supernumerary ring chromosomes and nuclear blebs in some low-grade malignant soft tissue tumours: Atypical lipomatous tumours and dermatofibrosarcoma protuberans. Virchows Arch 1998; 432: 5218.
  • 87
    Shimizu A, O'Brien KP, Sjoblom T et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999; 59: 371923.
  • 88
    Nishio J, Iwasaki H, Ishiguro M et al. Supernumerary ring chromosome in a Bednar tumor (pigmented dermatofibrosarcoma protuberans) is composed of interspersed sequences from chromosomes 17 and 22: A fluorescence in situ hybridization and comparative genomic hybridization analysis. Genes Chromosomes Cancer 2001; 30: 3059.
  • 89
    Nishio J, Iwasaki H, Ohjimi Y et al. Supernumerary ring chromosomes in dermatofibrosarcoma protuberans may contain sequences from 8q11.2-qter and 17q21-qter: A combined cytogenetic and comparative genomic hybridization study. Cancer Genet Cytogenet 2001; 129: 1026.
  • 90
    Patel KU, Szabo SS, Hernandez VS et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol 2008; 39: 18493.
  • 91
    Takahira T, Oda Y, Tamiya S et al. Detection of COL1A1-PDGFB fusion transcripts and PDGFB/PDGFRB mRNA expression in dermatofibrosarcoma protuberans. Mod Pathol 2007; 20: 66875.
  • 92
    Hisaoka M, Okamoto S, Morimitsu Y, Tsuji S, Hashimoto H. Dermatofibrosarcoma protuberans with fibrosarcomatous areas. Molecular abnormalities of the p53 pathway in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Virchows Arch 1998; 433: 3239.
  • 93
    Abbott JJ, Erickson-Johnson M, Wang X, Nascimento AG, Oliveira AM. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol 2006; 19: 151218.
  • 94
    Panagopoulos I, Storlazzi CT, Fletcher CD et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004; 40: 21828.
  • 95
    Mertens F, Fletcher CD, Antonescu CR et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005; 85: 40815.
  • 96
    Matsuyama A, Hisaoka M, Shimajiri S et al. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 2006; 30: 107784.
  • 97
    Guillou L, Benhattar J, Gengler C et al. Translocation-positive low-grade fibromyxoid sarcoma: Clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: A study from the French Sarcoma Group. Am J Surg Pathol 2007; 31: 1387402.
  • 98
    Matsuyama A, Hisaoka M, Shimajiri S, Hashimoto H. DNA-based polymerase chain reaction for detecting FUS-CREB3L2 in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Diagn Mol Pathol 2008; 17: 23740.
  • 99
    Bridge JA, Kanamori M, Ma Z et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001; 159: 41115.
  • 100
    Chen ST, Lee JC. An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: Combination of distinct morphologic, immunohistochemical, and genetic features. Hum Pathol 2008; 39: 18548.
  • 101
    Cools J, Wlodarska I, Somers R et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002; 34: 35462.
  • 102
    Debiec-Rychter M, Marynen P, Hagemeijer A, Pauwels P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003; 38: 18790.
  • 103
    Hisaoka M, Shimajiri S, Matsuki Y et al. Inflammatory myofibroblastic tumor with predominant anaplastic lymphoma kinase-positive cells lacking a myofibroblastic phenotype. Pathol Int 2003; 53: 37681.
  • 104
    Lawrence B, Perez-Atayde A, Hibbard MK et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000; 157: 37784.
  • 105
    Ma Z, Hill DA, Collins MH et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003; 37: 98105.
  • 106
    Makimoto Y, Nabeshima K, Iwasaki H et al. Inflammatory myofibroblastic tumor of the posterior mediastinum: An older adult case with anaplastic lymphoma kinase abnormalities determined using immunohistochemistry and fluorescence in situ hybridization. Virchows Arch 2005; 446: 4515.
  • 107
    Panagopoulos I, Nilsson T, Domanski HA et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006; 118: 11816.
  • 108
    Qiu X, Montgomery E, Sun B. Inflammatory myofibroblastic tumor and low-grade myofibroblastic sarcoma: A comparative study of clinicopathologic features and further observations on the immunohistochemical profile of myofibroblasts. Hum Pathol 2008; 39: 84656.
  • 109
    Shintaku M, Fukushima A. Inflammatory myofibroblastic tumor of the uterus with prominent myxoid change. Pathol Int 2006; 56: 6258.
  • 110
    Swain RS, Tihan T, Horvai AE et al. Inflammatory myofibroblastic tumor of the central nervous system and its relationship to inflammatory pseudotumor. Hum Pathol 2008; 39: 41019.
  • 111
    Tsuzuki T, Magi-Galluzzi C, Epstein JI. ALK-1 expression in inflammatory myofibroblastic tumor of the urinary bladder. Am J Surg Pathol 2004; 28: 160914.
  • 112
    Yamamoto H, Kohashi K, Oda Y et al. Absence of human herpesvirus-8 and Epstein-Barr virus in inflammatory myofibroblastic tumor with anaplastic large cell lymphoma kinase fusion gene. Pathol Int 2006; 56: 58490.
  • 113
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Liposarcoma. Cancer Genet Cytogenet 2004; 155: 124.
  • 114
    Iwasaki H, Isayama T, Ohjimi Y et al. Malignant fibrous histiocytoma. A tumor of facultative histiocytes showing mesenchymal differentiation in cultured cell lines. Cancer 1992; 69: 43747.
  • 115
    Nishio J, Iwasaki H, Ishiguro M et al. Establishment of a new human malignant fibrous histiocytoma cell line, FU-MFH-1: Cytogenetic characterization by comparative genomic hybridization and fluorescence in situ hybridization. Cancer Genet Cytogenet 2003; 144: 4451.
  • 116
    Nakayama R, Nemoto T, Takahashi H et al. Gene expression analysis of soft tissue sarcomas: Characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 2007; 20: 74959.
  • 117
    Bridge RS Jr, Bridge JA, Neff JR, Naumann S, Althof P, Bruch LA. Recurrent chromosomal imbalances and structurally abnormal breakpoints within complex karyotypes of malignant peripheral nerve sheath tumour and malignant triton tumour: A cytogenetic and molecular cytogenetic study. J Clin Pathol 2004; 57: 11728.
  • 118
    Gordon T, McManus A, Anderson J et al. Cytogenetic abnormalities in 42 rhabdomyosarcoma: A United Kingdom Cancer Cytogenetics Group Study. Med Pediatr Oncol 2001; 36: 25967.
  • 119
    Mandahl N, Fletcher CD, Dal Cin P et al. Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: A report from the CHAMP Study Group. Cancer Genet Cytogenet 2000; 116: 6673.
  • 120
    Meis-Kindblom JM, Sjogren H, Kindblom LG et al. Cytogenetic and molecular genetic analyses of liposarcoma and its soft tissue simulators: Recognition of new variants and differential diagnosis. Virchows Arch 2001; 439: 14151.
  • 121
    Gisselsson D, Bjork J, Hoglund M et al. Abnormal nuclear shape in solid tumors reflects mitotic instability. Am J Pathol 2001; 158: 199206.
  • 122
    Miyajima K, Oda Y, Tamiya S, Shimizu K, Hachitanda Y, Tsuneyoshi M. Cytogenetic and clinicopathological analysis of soft-tissue leiomyosarcomas. Pathol Int 2003; 53: 1638.
  • 123
    Walter TA, Weh HJ, Schlag PM, Zornig C, Hossfeld DK. Cytogenetic studies in malignant fibrous histiocytoma. Cancer Genet Cytogenet 1997; 94: 1314.
  • 124
    Mandahl N, Heim S, Willen H et al. Characteristic karyotypic anomalies identify subtypes of malignant fibrous histiocytoma. Genes Chromosomes Cancer 1989; 1: 914.
  • 125
    Szymanska J, Tarkkanen M, Wiklund T et al. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet 1995; 85: 916.
  • 126
    Choong PF, Mandahl N, Mertens F et al. 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 1996; 16: 8893.
  • 127
    Hinze R, Schagdarsurengin U, Taubert H et al. Assessment of genomic imbalances in malignant fibrous histiocytomas by comparative genomic hybridization. Int J Mol Med 1999; 3: 759.
  • 128
    Nilbert M, Rydholm A, Mitelman F, Meltzer PS, Mandahl N. Characterization of the 12q13-15 amplicon in soft tissue tumors. Cancer Genet Cytogenet 1995; 83: 326.
  • 129
    Berner JM, Forus A, Elkahloun A, Meltzer PS, Fodstad O, Myklebost O. Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 1996; 17: 2549.
  • 130
    Forus A, Florenes VA, Maelandsmo GM, Meltzer PS, Fodstad O, Myklebost O. Mapping of amplification units in the q13-14 region of chromosome 12 in human sarcomas: Some amplica do not include MDM2. Cell Growth Differ 1993; 4: 106570.
  • 131
    Meltzer PS, Jankowski SA, Dal Cin P, Sandberg AA, Paz IB, Coccia MA. Identification and cloning of a novel amplified DNA sequence in human malignant fibrous histiocytoma derived from a region of chromosome 12 frequently rearranged in soft tissue tumors. Cell Growth Differ 1991; 2: 495501.
  • 132
    Reid AH, Tsai MM, Venzon DJ, Wright CF, Lack EE, O'Leary TJ. MDM2 amplification, P53 mutation, and accumulation of the P53 gene product in malignant fibrous histiocytoma. Diagn Mol Pathol 1996; 5: 6573.
  • 133
    Smith SH, Weiss SW, Jankowski SA, Coccia MA, Meltzer PS. SAS amplification in soft tissue sarcomas. Cancer Res 1992; 52: 37469.
  • 134
    Jankowski SA, Mitchell DS, Smith SH, Trent JM, Meltzer PS. SAS, a gene amplified in human sarcomas, encodes a new member of the transmembrane 4 superfamily of proteins. Oncogene 1994; 9: 120511.
  • 135
    Sherr CJ. Cancer cell cycles. Science 1996; 274: 16727.
  • 136
    Lovell-Badge R. Developmental genetics. Living with bad architecture. Nature 1995; 376: 7256.
  • 137
    Takahashi H, Nemoto T, Yoshida T, Honda H, Hasegawa T. Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method. BMC Bioinformatics 2006; 7: 399.
  • 138
    Francis P, Namlos HM, Muller C et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: Hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 2007; 8: 73.
  • 139
    Mertens F, Dal Cin P, De Wever I et al. Cytogenetic characterization of peripheral nerve sheath tumours: A report of the CHAMP study group. J Pathol 2000; 190: 318.
  • 140
    Schmidt H, Taubert H, Meye A et al. Gains in chromosomes 7, 8q, 15q and 17q are characteristic changes in malignant but not in benign peripheral nerve sheath tumors from patients with Recklinghausen's disease. Cancer Lett 2000; 155: 18190.
  • 141
    Sonobe H, Takeuchi T, Furihata M et al. A new human malignant peripheral nerve sheath tumour-cell line, HS-sch-2, harbouring p53 point mutation. Int J Oncol 2000; 17: 34752.
  • 142
    Schmidt H, Taubert H, Wurl P et al. Cytogenetic characterization of six malignant peripheral nerve sheath tumors: Comparison of karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2001; 128: 1423.
  • 143
    Aoki M, Nabeshima K, Nishio J et al. Establishment of three malignant peripheral nerve sheath tumor cell lines, FU-SFT8611, 8710 and 9817: Conventional and molecular cytogenetic characterization. Int J Oncol 2006; 29: 14218.
  • 144
    Ishiguro M, Iwasaki H, Takeshita M, Hirose Y, Kaneko Y. A cytogenetic analysis in two cases of malignant peripheral nerve sheath tumor showing hypodiploid karyotype. Oncol Rep 2006; 16: 22532.
  • 145
    Kobayashi C, Oda Y, Takahira T et al. Chromosomal aberrations and microsatellite instability of malignant peripheral nerve sheath tumors: A study of 10 tumors from nine patients. Cancer Genet Cytogenet 2006; 165: 98105.
  • 146
    Nakagawa Y, Yoshida A, Numoto K et al. Chromosomal imbalances in malignant peripheral nerve sheath tumor detected by metaphase and microarray comparative genomic hybridization. Oncol Rep 2006; 15: 297303.
  • 147
    Koga T, Iwasaki H, Ishiguro M, Matsuzaki A, Kikuchi M. Losses in chromosomes 17, 19, and 22q in neurofibromatosis type 1 and sporadic neurofibromas: A comparative genomic hybridization analysis. Cancer Genet Cytogenet 2002; 136: 11320.
  • 148
    Koga T, Iwasaki H, Ishiguro M, Matsuzaki A, Kikuchi M. Frequent genomic imbalances in chromosomes 17, 19, and 22q in peripheral nerve sheath tumours detected by comparative genomic hybridization analysis. J Pathol 2002; 197: 98107.
  • 149
    Karube K, Nabeshima K, Ishiguro M, Harada M, Iwasaki H. cDNA microarray analysis of cancer associated gene expression profiles in malignant peripheral nerve sheath tumours. J Clin Pathol 2006; 59: 16065.
  • 150
    Upadhyaya M, Kluwe L, Spurlock G et al. Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat 2008; 29: 7482.
  • 151
    Mantripragada KK, Spurlock G, Kluwe L et al. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res 2008; 14: 101524.
  • 152
    Coindre JM, Mariani O, Chibon F et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: A review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol 2003; 16: 25662.
  • 153
    Pedeutour F, Forus A, Coindre JM et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 1999; 24: 3041.
  • 154
    Rosai J, Akerman M, Dal Cin P et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP Study Group). Am J Surg Pathol 1996; 20: 11829.
  • 155
    Dei Tos AP, Doglioni C, Piccinin S et al. Molecular abnormalities of the p53 pathway in dedifferentiated liposarcoma. J Pathol 1997; 181: 813.
  • 156
    Buto S, Pierotti MA, Tamborini E et al. Biochemical uncovering of mdm2/p53 complexes in liposarcomas parallels their immunohistochemical detection. Diagn Mol Pathol 1999; 8: 12530.
  • 157
    Pilotti S, Della Torre G, Lavarino C et al. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: Implications for different pathogenetic mechanisms. J Pathol 1997; 181: 1424.
  • 158
    Boltze C, Schneider-Stock R, Jager V, Roessner A. Distinction between lipoma and liposarcoma by MDM2 alterations: A case report of simultaneously occurring tumors and review of the literature. Pathol Res Pract 2001; 197: 5638.
  • 159
    Gisselsson D, Pettersson L, Hoglund M et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA 2000; 97: 535762.
  • 160
    Montgomery E, Argani P, Hicks JL, DeMarzo AM, Meeker AK. Telomere lengths of translocation-associated and nontranslocation-associated sarcomas differ dramatically. Am J Pathol 2004; 164: 15239.
  • 161
    Johnson JE, Gettings EJ, Schwalm J et al. Whole-genome profiling in liposarcomas reveals genetic alterations common to specific telomere maintenance mechanisms. Cancer Res 2007; 67: 92218.
  • 162
    Fletcher CD. Pleomorphic malignant fibrous histiocytoma: Fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 1992; 16: 21328.
  • 163
    Iwasaki H, Kikuchi M, Takii M, Enjoji M. Benign and malignant fibrous histiocytomas of the soft tissues: Functional characterization of the cultured cells. Cancer 1982; 50: 52030.
  • 164
    Oda Y, Tamiya S, Oshiro Y et al. Reassessment and clinicopathological prognostic factors of malignant fibrous histiocytoma of soft parts. Pathol Int 2002; 52: 595606.
  • 165
    Stout AP. Sarcomas of the soft tissues. CA Cancer J Clin 1961; 11: 21031.
    Direct Link:
  • 166
    Tsuneyoshi M, Enjoji M, Shinohara N. Malignant fibrous histiocytoma: An electron microscopic study of 17 cases. Virchows Arch A Pathol Anat Histol 1981; 392: 13545.
  • 167
    Weiss SW. Malignant fibrous histiocytoma. A reaffirmation. Am J Surg Pathol 1982; 6: 77384.
  • 168
    Iwasaki H, Isayama T, Johzaki H, Kikuchi M. Malignant fibrous histiocytoma. Evidence of perivascular mesenchymal cell origin immunocytochemical studies with monoclonal anti-MFH antibodies. Am J Pathol 1987; 128: 52837.
  • 169
    Fu DL, Yang F, Maskay A et al. Primary intestinal malignant fibrous histiocytoma: Two case reports. World J Gastroenterol 2007; 13: 1299302.
  • 170
    Hashimoto H, Daimaru Y, Tsuneyoshi M, Enjoji M. Soft tissue sarcoma with additional anaplastic components. A clinicopathologic and immunohistochemical study of 27 cases. Cancer 1990; 66: 157889.
  • 171
    Hirose T, Kudo E, Hasegawa T, Abe J, Hizawa K. Expression of intermediate filaments in malignant fibrous histiocytomas. Hum Pathol 1989; 20: 87177.
  • 172
    Hoffman MA, Dickersin GR. Malignant fibrous histiocytoma: An ultrastructural study of eleven cases. Hum Pathol 1983; 14: 91322.
  • 173
    Imai Y, Yamakawa M, Sato T, Suda A. Malignant fibrous histiocytoma: Similarities to the ‘fibrohistiocytoid cells’ in chronic inflammation. Virchows Arch [A 1989; 414: 28598.
  • 174
    Isayama T, Iwasaki H, Kikuchi M. The origin of malignant fibrous histiocytoma: Immunohistochemical analysis with monoclonal antibodies. Med Bull Fukuoka Univ 1987; 14: 191203.
  • 175
    Iwasaki H, Yoshitake K, Ohjimi Y et al. Malignant fibrous histiocytoma. Proliferative compartment and heterogeneity of ‘histiocytic’ cells. Am J Surg Pathol 1992; 16: 73545.
  • 176
    Miettinen M, Soini Y. Malignant fibrous histiocytoma. Heterogeneous patterns of intermediate filament proteins by immunohistochemistry. Arch Pathol Lab Med 1989; 113: 13636.
  • 177
    Roholl PJ, Kleyne J, Van Unnik JA. Characterization of tumor cells in malignant fibrous histiocytomas and other soft-tissue tumors, in comparison with malignant histiocytes. II. Immunoperoxidase study on cryostat sections. Am J Pathol 1985; 121: 26974.
  • 178
    Roholl PJ, Prinsen I, Rademakers LP, Hsu SM, Van Unnik JA. Two cell lines with epithelial cell-like characteristics established from malignant fibrous histiocytomas. Cancer 1991; 68: 196372.
  • 179
    Yamate J, Ogata K, Yuasa T et al. Adipogenic, osteogenic and myofibrogenic differentiations of a rat malignant fibrous histiocytoma (MFH)-derived cell line, and a relationship of MFH cells with embryonal mesenchymal, perivascular and bone marrow stem cells. Eur J Cancer 2007; 43: 274756.
  • 180
    Richter KK, Parham DM, Scheele J, Hinze R, Rath FW. Presarcomatous lesions of experimentally induced sarcomas in rats: Morphologic, histochemical, and immunohistochemical features. In Vivo 1999; 13: 34955.
  • 181
    Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003; 196: 24550.
  • 182
    He Q, Wan C, Li G. Concise review: Multipotent mesenchymal stromal cells in blood. Stem Cells 2007; 25: 6977.
  • 183
    Koide Y, Morikawa S, Mabuchi Y et al. Two distinct stem cell lineages in murine bone marrow. Stem Cells 2007; 25: 121321.
  • 184
    Nedeau AE, Bauer RJ, Gallagher K, Chen H, Liu ZJ, Velazquez OC. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res 2008; 314: 217686.
  • 185
    Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25: 264859.
  • 186
    Yamaguchi Y, Kubo T, Murakami T et al. Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol 2005; 152: 61622.
  • 187
    Shima Y, Okamoto T, Aoyama T et al. In vitro transformation of mesenchymal stem cells by oncogenic H-rasVal12. Biochem Biophys Res Commun 2007; 353: 6066.
  • 188
    Matushansky I, Hernando E, Socci ND et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117: 324857.
  • 189
    Burns JS, Abdallah BM, Shroder HD, Kassem M. The histopathology of a human mesenchymal stem cell experimental tumor model: Support for an hMSC origin for Ewing's sarcoma? Histol Histopathol 2008; 23: 122940.
  • 190
    Aoki M, Nabeshima K, Koga K et al. Imatinib mesylate inhibits cell invasion of malignant peripheral nerve sheath tumor induced by platelet-derived growth factor-BB. Lab Invest 2007; 87: 76779.
  • 191
    Nabeshima K, Iwasaki H, Nishio J, Koga K, Shishime M, Kikuchi M. Expression of emmprin and matrix metalloproteinases (MMPs) in peripheral nerve sheath tumors: Emmprin and membrane-type (MT)1-MMP expressions are associated with malignant potential. Anticancer Res 2006; 26: 135967.
  • 192
    Koga K, Nabeshima K, Aoki M et al. Emmprin in epithelioid sarcoma: Expression in tumor cell membrane and stimulation of MMP-2 production in tumor-associated fibroblasts. Int J Cancer 2007; 120: 7618.