Cellulose-synthesizing terminal complexes and microfibril structure in the brown alga Sphacelaria rigidula (Sphacelariales, Phaeophyceae)*


  • *

    Dedicated to Professors Masakazu Tatewaki and Tadao Yoshida on the occasion of their academic retirement.

  • Communicating editor: T. Motomura.

**To whom correspondence should be addressed.


The brown alga Sphacelaria rigidula Kützing synthesizes cellulose microfibrils as determined by CBH I-gold labeling. The cellulose microfibrils are thin, ribbon-like structures with a uniform thickness of about 2.6 nm and a variable width in the range of 2.6-30 nm. Some striations appear along the longitudinal axis of the microfibrils. The developed cell wall in Sphacelaria is composed of three to four layers, and cellulose micro-fibrils are deposited in the third layer from the outside of the wall. A freeze fracture investigation of this alga revealed cellulose-synthesizing terminal complexes (TCs), which are associated with the tip of microfibril impressions in the plasmatic fracture face of the plasma membrane. The TCs consist of subunits arranged in a single linear row. The average diameter of the sub-units is about 6 nm, and the intervals between the neighboring subunits, about 9 nm, are relatively constant. The number of subunits constituting the TC varies between 10 and 100, so that the length of the whole TC varies widely. A model that has been proposed for the assembly of thin, ribbon-like microfibrils was applied to microfibril assembly in Sphacelaria.