SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jenkins P, Watts J. An improved model for predicting radiation pneumonitis incorporating clinical and dosimetric variables. Int. J. Radiat. Oncol. Biol. Phys. 2011; 80: 10239.
  • 2
    Goans RE, Wald N. Radiation accidents with multi-organ failure in the United States. BJR Suppl. 2005; 27: 416.
  • 3
    Azizova TV, Semenikhina NG, Druzhinina MB. Multi-organ involvement and failure in selected accident cases with acute radiation syndrome observed at the Mayak Nuclear Facility. BJR Suppl. 2005; 27: 305.
  • 4
    International Atomic Energy Agency. The radiological accident in Goiania. Delves D, Fhtton S (eds) [Accessed 7 November 2011.] Available from URL: http://www-pub.iaea.org/mtcd/publications/pdf/pub815_web.pdf.
  • 5
    Resnick IB, Slavin S. Lessons from bone marrow transplantation for a victim of a radiological accident with acute radiation syndrome. BJR Suppl. 2005; 27: 215.
  • 6
    Changlin Y, Genyao Y. Multi-organ failure in a radiation accident: the Chinese experience of 1990. BJR Suppl. 2005; 27: 4754.
  • 7
    Konchalovsky MV, Baranov AE, Kolganov AV. Multiple organ involvement and failure: selected Russian radiation accident cases re-visited. BJR Suppl. 2005; 27: 269.
  • 8
    Hirama T, Akashi M. Multi-organ involvement in the patient who survived the Tokai-mura criticality accident. BJR Suppl. 2005; 27: 1720.
  • 9
    Aramratana M, Boonnak S, Boonpadhanapong T et al. International Atomic Energy Agency. The radiological accident in Samut Prakarn. [Accessed 7 November 2011.] Available from URL: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1124_scr.pdf.
  • 10
    Buglova E, Bulski W, Skłodowska M et al. International Atomic Energy Agency. Accidental overexposure of radiotherapy patients in Bialystok. 2001. [Accessed 7 November 2011.] Available from URL: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1180_web.pdf.
  • 11
    Van Dyk J, Keane TJ, Kan S et al. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung. Int. J. Radiat. Oncol. Biol. Phys. 1981; 7: 4617.
  • 12
    Hill RP. Radiation effects on the respiratory system. BJR Suppl. 2005; 27: 7581.
  • 13
    Marks LB, Yu X, Vujaskovic Z et al. Radiation-induced lung injury. Semin. Radiat. Oncol. 2003; 13: 33345.
  • 14
    Evans ES, Hahn CA, Kocak Z et al. The role of functional imaging in the diagnosis and management of late normal tissue injury. Semin. Radiat. Oncol. 2007; 17: 7280.
  • 15
    Fain S, Schiebler ML, McCormack DG et al. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. J. Magn. Reson. Imaging 2010; 32: 1398408.
  • 16
    Yorke ED, Jackson A, Rosenzweig KE et al. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int. J. Radiat. Oncol. Biol. Phys. 2005; 63: 67282.
  • 17
    Madani I, De Ruyck K, Goeminne H et al. De Neve W, Thierens H and Van Meerbeeck J. Predicting risk of radiation-induced lung injury. J. Thorac. Oncol. 2007; 2: 86474.
  • 18
    Anscher MS, Chen L, Rabbani Z et al. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62: 2559.
  • 19
    Jin H, Tucker SL, Liu HH et al. Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother. Oncol. 2009; 91: 42732.
  • 20
    Bjermer L, Franzen L, Littbrand B et al. Effects of smoking and irradiated volume on inflammatory response in the lung of irradiated breast cancer patients evaluated with bronchoalveolar lavage. Cancer Res. 1990; 50: 202730.
  • 21
    Williams JP, Brown SL, Georges GE et al. Animal models for medical countermeasures to radiation exposure. Radiat. Res. 2010; 173: 55778.
  • 22
    McLaughlin RF, Tyler WS, Canada RO. A study of the subgross pulmonary anatomy of various mammals. Am. J. Anat. 1961; 108: 14965.
  • 23
    Khan MA, Hill RP, Van Dyk J. Partial volume rat lung irradiation: an evaluation of early DNA damage. Int. J. Radiat. Oncol. Biol. Phys. 1998; 40: 46776.
  • 24
    Johnston CJ, Piedboeuf B, Rubin P et al. Early and persistent alterations in the expression of interleukin-1 alpha, interleukin-1 beta and tumor necrosis factor alpha mRNA levels in fibrosis-resistant and sensitive mice after thoracic irradiation. Radiat. Res. 1996; 145: 76267.
  • 25
    Johnston CJ, Wright TW, Rubin P et al. Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and -sensitive mice after thoracic irradiation. Exp. Lung Res. 1998; 24: 32137.
  • 26
    Rubin P, Johnston CJ, Williams JP et al. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 1995; 33: 99109.
  • 27
    Johnston CJ, Hernady E, Reed C et al. Early alterations in cytokine expression in adult compared to developing lung in mice after radiation exposure. Radiat. Res. 2010; 173: 52235.
  • 28
    Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr. Med. Chem. 2009; 16: 13043.
  • 29
    Ghafoori P, Marks LB, Vujaskovic Z et al. Radiation-induced lung injury. Assessment, management, and prevention. Oncology 2008; 22: 3747.
  • 30
    Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic. Biol. Med. 2010; 48: 103443.
  • 31
    Travis EL, Harley RA, Fenn JO et al. Pathologic changes in the lung following single and multi-fraction irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1977; 2: 47590.
  • 32
    Vergara JA, Raymond U, Thet LA. Changes in lung morphology and cell number in radiation pneumonitis and fibrosis: a quantitative ultrastructural study. Int. J. Radiat. Oncol. Biol. Phys. 1987; 13: 72332.
  • 33
    Zhang R, Ghosh SN, Zhu D et al. Structural and functional alterations in the rat lung following whole thoracic irradiation with moderate doses: injury and recovery. Int. J. Radiat. Biol. 2008; 84: 48797.
  • 34
    Szabo S, Ghosh SN, Fish BL et al. Cellular inflammatory infiltrate in pneumonitis induced by a single moderate dose of thoracic x radiation in rats. Radiat. Res. 2010; 173: 54556.
  • 35
    Travis EL, Vojnovic B, Davies EE et al. A plethysmographic method for measuring function in locally irradiated mouse lung. Br. J. Radiol. 1979; 52: 6774.
  • 36
    Haston CK, Hill RP, Newcomb CH et al. Radiation-induced lung damage in rats: the influence of fraction spacing on effect per fraction. Int. J. Radiat. Oncol. Biol. Phys. 1994; 28: 63340.
  • 37
    Ghosh SN, Zhang R, Fish BL et al. Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2009; 75: 152836.
  • 38
    Mahmood J, Jelveh S, Calveley V et al. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int. J. Radiat. Biol. 2011; 87: 889901.
  • 39
    van Rongen E, Tan C, Zurcher C. Early and late effects of fractionated irradiation of the thorax of WAG/Rij rats. Br. J. Cancer Suppl. 1986; 7: 33335.
  • 40
    Jackson IL, Vujaskovic Z, Down JD. Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat. Res. 2010; 173: 1020.
  • 41
    Fleckenstein K, Zgonjanin L, Chen L et al. Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2007; 68: 196204.
  • 42
    Ghosh SN, Wu Q, Mader M et al. Vascular injury after whole thoracic x-ray irradiation in the rat. Int. J. Radiat. Oncol. Biol. Phys. 2009; 74: 19299.
  • 43
    Rodriguez-Garcia JL, Fraile G, Moreno MA et al. Recurrent massive pleural effusion as a late complication of radiotherapy in Hodgkin's disease. Chest 1991; 100: 11656.
  • 44
    Morrone N, Gamae Silva Volpe VL, Dourado AM et al. Bilateral pleural effusion due to mediastinal fibrosis induced by radiotherapy. Chest 1993; 104: 12768.
  • 45
    Van Renterghem DM, Pauwels RA. Chylothorax and pleural effusion as late complications of thoracic irradiation. Chest 1995; 108: 8867.
  • 46
    Ward WF, Molteni A, Ts'ao CH et al. Radiation pneumotoxicity in rats: modification by inhibitors of angiotensin converting enzyme. Int. J. Radiat. Oncol. Biol. Phys. 1992; 22: 6235.
  • 47
    Ward WF, Lin PJ, Wong PS et al. Radiation pneumonitis in rats and its modification by the angiotensin-converting enzyme inhibitor captopril evaluated by high-resolution computed tomography. Radiat. Res. 1993; 135: 817.
  • 48
    Williams JP, Hernady E, Johnston CJ et al. Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat. Res. 2004; 161: 5607.
  • 49
    Rabbani ZN, Salahuddin FK, Yarmolenko P et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic. Res. 2007; 41: 127382.
  • 50
    Anscher MS. Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist 2010; 15: 3509.
  • 51
    Ward WF, Le Roux A, Bischoff P. Radiation countermeasure agents: an update. Expert Opin. Ther. Pat. 2010; 20: 73101.
  • 52
    Stone HB, Coleman CN, Anscher MS et al. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003; 4: 52936.
  • 53
    Ward WF, Molteni A, Ts'ao C-H. Radiation-induced endothelial dysfunction and fibrosis in rat lung: modification by the angiotensin converting enzyme inhibitor CL242817. Radiat. Res. 1989; 117: 34250.
  • 54
    Ward WF, Molteni A, Kim YT et al. Structure-function analysis of angiotensin-converting enzyme inhibitors as modifiers of radiation-induced pulmonary endothelial dysfunction in rats. Br. J. Radiol. 1989; 62: 34854.
  • 55
    Ward WF, Molteni A, Ts'ao C-H et al. Captopril reduces collagen and mast cell accumulation in irradiated rat lung. Int. J. Radiat. Oncol. Biol. Phys. 1990; 19: 14059.
  • 56
    Molteni A, Moulder JE, Cohen EF et al. Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int. J. Radiat. Biol. 2000; 76: 52332.
  • 57
    PDR Network. Physicians, Desk Reference. 65th edn. PDR Network, Montvale, NJ, 2011.
  • 58
    Moulder JE, Cohen EP, Fish BL. Captopril and losartan for mitigation of renal injury caused by single-dose total-body irradiation. Radiat. Res. 2011; 175: 2936.
  • 59
    Radiation Therapy Oncology Group. A Phase II Randomized Trial with Captopril in Patients Who Have Received Radiation Therapy +/− Chemotherapy for Stage II-IIIB Non-Small Cell Lung Cancer, Stage I Central Non-Small Cell Lung Cancer, or Limited-Stage Small-Cell Lung Cancer. Report in Radiation Therapy Oncology Group, Philadelphia, 2009.
  • 60
    Cohen EP, Bedi M, Irwing AA et al. Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int. J. Radiat. Oncol. Biol. Phys. (in press).
  • 61
    Molteni A, Wolfe LF, Ward WF et al. Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr. Pharm. Des. 2007; 13: 130716.
  • 62
    Jenrow KA, Brown SL, Liu J et al. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat. Oncol. 2010; 5: 6.