SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Coxson HO, Mayo J, Lam S et al. New and current clinical imaging techniques to study chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2009; 180: 58897.
  • 2
    de Jong PA, Muller NL, Pare PD et al. Computed tomographic imaging of the airways: relationship to structure and function. Eur. Respir. J. 2005; 26: 14052.
  • 3
    Deveci F, Murat A, Turgut T et al. Airway wall thickness in patients with COPD and healthy current smokers and healthy non-smokers: assessment with high resolution computed tomographic scanning. Respiration 2004; 71: 60210.
  • 4
    Aysola RS, Hoffman EA, Gierada D et al. Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest 2008; 134: 118391.
  • 5
    Coxson HO. Quantitative computed tomography assessment of airway wall dimensions: current status and potential applications for phenotyping chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2008; 5: 9405.
  • 6
    Wagnieres G, McWilliams A, Lam S. Lung cancer imaging with fluorescence endoscopy. In: Mycek M, Pogue B (eds) Handbook of Biomedical Fluorescence. Marcel Dekker, New York, 2003; 36196.
  • 7
    Shibuya K, Hoshino H, Chiyo M et al. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loos of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer. Thorax 2003; 58: 98995.
  • 8
    Vincent B, Fraig M, Silvestri G. A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest 2007; 131: 179488.
  • 9
    Gono K, Obi T, Yamaguchi M et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J. Biomed. Opt. 2004; 9: 56878.
  • 10
    Lam S. The role of autofluorescence bronchoscopy in diagnosis of early lung cancer. In: Hirsch FR, Bunn PA, Kato H et al. (eds) IASLC Textbook for Prevention and Detection of Early Lung Cancer. Taylor & Francis, London, 2006; 14958.
  • 11
    Hung J, Lam S, LeRiche JC et al. Autofluorescence of normal and malignant bronchial tissue. Lasers Surg. Med. 1991; 11: 99105.
  • 12
    Zellweger M, Grosjean P, Goujon D et al. In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers. J. Biomed. Opt. 2001; 6: 4151.
  • 13
    Palcic B, Lam S, Hung J et al. Detection and localization of early lung cancer by imaging techniques. Chest 1991; 99: 7423.
  • 14
    Lam S, MacAulay C, Hung J et al. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J. Thorac. Cardiovasc. Surg. 1993; 105: 103540.
  • 15
    Edell E, Lam S, Pass H et al. Detection and localization of intraepithelial neoplasia and invasive carcinoma using fluorescence-reflectance bronchoscopy: an international, multicenter clinical trial. J. Thorac. Oncol. 2009; 4: 4954.
  • 16
    Chiyo M, Shibuya K, Hoshino H et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer 2005; 48: 30713.
  • 17
    Häussinger K, Stanzel F, Huber RM et al. Autofluorescence detection of bronchial tumors with the D-Light/AF. Diagn. Ther. Endosc. 1999; 5: 10512.
  • 18
    Goujon D, Zellweger M, Radu A et al. In vivo autofluorescence imaging of early cancers in the human tracheobronchial tree with a spectrally optimized system. J. Biomed. Opt. 2003; 8: 1725.
  • 19
    Tercelj M, Zeng H, Petek M et al. Acquisition of fluorescence and reflectance spectra during routine bronchoscopy examinations using the ClearVu Elite device: pilot study. Lung Cancer 2005; 50: 3542.
  • 20
    Ikeda N, Honda H, Hayashi A et al. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer 2006; 52: 217.
  • 21
    Lee P, Brokx HAP, Postmus PE et al. Dual digital video-autofluorescence imaging for detection of preneoplastic lesions. Lung Cancer 2007; 58: 449.
  • 22
    Hirsch FR, Prindiville SA, Miller YE et al. Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: a randomized study. J. Natl Cancer Inst. 2001; 93: 138591.
  • 23
    Häussinger K, Becker H, Stanzel F et al. Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial. Thorax 2005; 60: 496503.
  • 24
    Lam S, Kennedy T, Unger M et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest 1998; 113: 696702.
  • 25
    Ernst A, Simoff P, Mathur P et al. D-Light autofluorescence in the detection of premalignant airway changes; A multicenter trial. J. Bronchol. 2005; 12: 1338.
  • 26
    Lee P, van den Berg RM, Lam S et al. Color fluorescence ratio for detection of bronchial dysplasia and carcinoma in situ. Clin. Cancer Res. 2009; 15: 47005.
  • 27
    Tajiri H, Niwa H. Proposal for a consensus terminology in endoscopy: how should different endoscopic imaging techniques be grouped and defined? Endoscopy 2008; 40: 7758.
  • 28
    Kaltenbach T, Sano Y, Friedland S et al. American Gastroenterological Association (AGA) institute technology assessment on image-enhanced endoscopy. Gastroenterology 2008; 134: 32740.
  • 29
    Curvers WL, Singh R, Song LM et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 2008; 57: 16772.
  • 30
    van den Broek FJ, Fockens P, van Eeden S et al. Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomized comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 2008; 57: 10839.
  • 31
    Gazdar AF, Minna JD. Angiogenesis and the multistage development of lung cancers. Clin. Cancer Res. 2000; 6: 16112.
  • 32
    Keith RL, Miller YE, Gemmill RM et al. Angiogenic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin. Cancer Res. 2000; 6: 161625.
  • 33
    Franklin WA. Diagnosis of lung cancer: pathology of invasive and preinvasive neoplasia. Chest 2000; 117: 80S9S.
  • 34
    Shibuya K, Hoshino H, Chiyo M et al. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer. Thorax 2003; 58: 98995.
  • 35
    Shibuya K, Nakajima T, Fujiwara T et al. Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung Cancer 2010; 69: 194202.
  • 36
    Herth FJ, Eberhardt R, Anantham D et al. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J. Thorac. Oncol. 2009; 4: 10605.
  • 37
    Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 117881.
  • 38
    Fujimoto JG, Brezinski ME, Tearney GJ et al. Biomedical imaging and optical biopsy using optical coherence tomography. Nat. Med. 1995; 1: 9702.
  • 39
    Tearney GJ, Brezinski ME, Bouma BE et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997; 276: 20379.
  • 40
    Tsuboi M, Hayashi A, Ikeda N et al. Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer 2005; 49: 38794.
  • 41
    Lam S, Standish B, Baldwin C et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin. Cancer Res. 2008; 14: 200611.
  • 42
    Celli BR, Snider GL, Heffner J et al. Committee of the Scientific Assembly on Clinical Problems. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society statement. Am. J. Respir. Crit. Care Med. 1995; 152: S77S120.
  • 43
    Pauwels RA, Buist AS, Calverley PM et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary. Am. J. Respir. Crit. Care Med. 2001; 163: 125676.
  • 44
    Hogg JC, Chu F, Utokaparch S et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 264553.
  • 45
    Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N. Engl. J. Med. 1968; 278: 135560.
  • 46
    McDonough JE, Yuan R, Masaru Suzuki M et al. The relationship between small airway obstruction and emphysema in COPD. N. Engl. J. Med. 2011; 365: 156775.
  • 47
    Coxson HO, Quiney B, Sin DD et al. Airway wall thickness assessed using computed tomography and optical coherence tomography. Am. J. Respir. Crit. Care Med. 2008; 177: 12016.
  • 48
    Chen Z, Milner TE, Srinivas S et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 1997; 22: 111921.
  • 49
    Yang VX, Tang SJ, Gordon ML et al. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest. Endosc. 2005; 61: 87990.
  • 50
    Rodriguez-Roisin R, Echazarreta A. The physiology of gas exchange. In: Stockley R, Rennard S, Rabe K et al. (eds) Chronic Obstructive Pulmonary Disease. Blackwell Publishing, Oxford, 2007; 1103.
  • 51
    Saxer CE, de Boer JF, Park BH et al. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 2000; 25: 13557.
  • 52
    Le Goualher G, Perchant A, Genet M et al. Towards optical biopsies with an integrated fibered confocal fluorescence microscope. In: Barillot C, Haynor DR, Hellier P (eds) Lecture Notes in Computer Science, Vol. 3217 (II). Springer, Berlin, 2001; 7618.
  • 53
    Thiberville L, Salaün M, Lachkar S et al. Confocal fluorescence endomicroscopy of the human airways. Proc. Am. Thorac. Soc. 2009; 6: 4449.
  • 54
    Thiberville L, Moreno-Swirc S, Vercauteren T et al. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 2007; 175: 2231.
  • 55
    Thiberville L, Salaün M. Bronchoscopic advances: on the way to the cells. Respiration 2010; 79: 4419.
  • 56
    Thiberville L, Salaün M, Lachkar S et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 2009; 33: 97485.
  • 57
    Lane P, Lam S, McWilliams A et al. Confocal fluorescence microendoscopy of bronchial epithelium. J. Biomed. Opt. 2009; 14: 024008-1-10.
  • 58
    Shibuya K, Fujiwara T, Yasufuku K et al. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system. Lung Cancer 2011; 72: 18490.
  • 59
    Olliver JR, Wild CP, Sahay P et al. Chromoendoscopy with methylene blue and associated DNA damage in Barrett's oesophagus. Lancet 2003; 362: 3734.
  • 60
    Pierce MC, Javier DJ, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int. J. Cancer 2008; 123: 197990.
  • 61
    Hsiung PL, Hardy J, Friedland S et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 2008; 14: 4548.
  • 62
    Thekkek N, Anandasabapathy S, Richards-Kortum R. Optical molecular imaging for detection of Barrett's-associated neoplasia. World J. Gastroenterol. 2011; 17: 5362.
  • 63
    At T. Raman Spectroscopy in Biology: Principles and Applications. Wiley, New York, 1982.
  • 64
    Perno JR, Grygon CA, Spiro TG. Raman excitation profiles for the nucleotides and for the nucleic acid duplexes poly (rA)-poly (rU) and poly(dG-dC). J. Phys. Chem. 1989; 93: 56728.
  • 65
    At T. Peptide backbone conformation and microenvironment of protein side chains. In: Clark RJH, Hester RE (eds) Spectroscopy of Biological Systems, Vol. 13. John Wiley & Sons, New York, 1986; 47112.
  • 66
    Huang Z, McWilliams A, Lui H et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 2003; 107: 104752.
  • 67
    Guze K, Short M, Sonis S et al. Parameters defining the potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. J. Biomed. Opt. 2009; 14: 014016-1-9.
  • 68
    Huang Z, Teh SK, Zheng W et al. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Opt. Lett. 2009; 34: 75860.
  • 69
    Short MA, Lam S, McWilliams A et al. Development and preliminary results of an endoscopy Raman probe for potential in-vivo diagnosis of lung cancers. Opt. Lett. 2008; 33: 7113.
  • 70
    Short MA, Lam S, McWilliams AM et al. Using laser Raman spectroscopy to reduce false positives of autofluorescence bronchoscopies—A pilot study. J. Thorac. Oncol. 2011; 6: 120614.
  • 71
    Khojasteh M, MacAulay C. Selective excitation light fluorescence (SELF) imaging. In: Farkas DL, Nicolau DV, Leif RC (eds) Proc. of SPIE, Vol. 7568. SPIE, Bellingham, WA, 2010; 75680F1-5.