• 1
    Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012; 5: 718.
  • 2
    Wedzicha JA, Donaldson GC. Exacerbations of chronic obstructive pulmonary disease. Respir. Care 2003; 48(12): 120413.
  • 3
    Patel IS, Seemungal TAR, Wilks M et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 2002; 57: 75964.
  • 4
    Yasothan U, Kar S. Therapies for COPD. Nat. Rev. Drug Discov. 2008; 7: 2856.
  • 5
    Jones R, Østrem A. Optimising pharmacological maintenance treatment for chronic obstructive pulmonary disease in primary care. Prim. Care Respir. J. 2011; 20: 3345.
  • 6
    Yang IA, Fong KM, Sim EHA et al. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2007; (2): CD002991.
  • 7
    Barnes PJ. Alveolar macrophages as orchestrators of COPD. COPD 2004; 1: 5970.
  • 8
    Prieto A, Reyes E, Bernstein ED et al. Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by glycophosphopeptical (inmunoferón). Am. J. Respir. Crit. Care Med. 2001; 163: 157883.
  • 9
    Berenson CS, Garlipp MA, Grove LJ et al. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J. Infect. Dis. 2006; 194: 137584.
  • 10
    Hodge S, Hodge G, Ahern J et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2007; 37: 74855.
  • 11
    Taylor AE, Finney-Hayward TK, Quint JK et al. Defective macrophage phagocytosis of bacteria in COPD. Eur. Respir. J. 2010; 35: 103947.
  • 12
    Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J. Leukoc. Biol. 2011; 90: 106578.
  • 13
    Hodge S, Hodge G, Scicchitano R et al. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 2003; 81: 28996.
    Direct Link:
  • 14
    Hodge S, Hodge G, Jersmann H et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008; 178: 13948.
  • 15
    Hodge S, Matthews G, Mukaro V et al. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am. J. Respir. Cell Mol. Biol. 2011; 44: 67381.
  • 16
    Hodge S, Reynolds PN. Low-dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyte-derived macrophages in COPD subjects. Respirology 2012; 17: 8038.
  • 17
    Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2008; 3: 33150.
  • 18
    Villagrasa V, Berto L, Cortijo J et al. Effects of erythromycin on chemoattractant-activated human polymorphonuclear leukocytes. Gen. Pharmacol. 1997; 29: 6059.
  • 19
    Kanai K-I, Asano K, Hisamitsu T et al. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro. Mediators Inflamm. 2004; 13: 3139.
  • 20
    Verleden SE, Vandooren J, Vos R et al. Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transpl. Immunol. 2011; 25: 15962.
  • 21
    Asgrimsson V, Gudjonsson T, Gudmundsson GH et al. Novel effects of azithromycin on tight junction proteins in human airway epithelia. Antimicrob. Agents Chemother. 2006; 50: 180512.
  • 22
    Yang M, Dong BR, Lu J et al. Macrolides for diffuse panbronchiolitis. Cochrane Database Syst. Rev. 2010; (12): CD007716.
  • 23
    Southern KW, Barker PM, Solis-Moya A et al. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. 2011; (12): CD002203.
  • 24
    Vanaudenaerde BM, Meyts I, Vos R et al. A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy. Eur. Respir. J. 2008; 32: 83242.
  • 25
    Cazzola M, Blasi F, Terzano C et al. Delivering antibacterials to the lungs: considerations for optimizing outcomes. Am. J. Respir. Med. 2002; 1: 26172.
  • 26
    McLean-Tooke A, Aldridge C, Stroud C et al. Practical management of antibiotic allergy in adults. J. Clin. Path. 2011; 64: 1929.
  • 27
    Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 1991; 35: 126772.
  • 28
    Gomez J, Banos V, Simarro E et al. Prospective, comparative study (1994–1998) of the influence of short-term prophylactic treatment with azithromycin on patients with advanced COPD. Rev. Esp. Quimioter. 2000; 13: 37983.
  • 29
    Albert RK, Connett J, Bailey WC et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 2011; 365: 68998.
  • 30
    Molinari G, Guzmán CA, Pesce A et al. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J. Antimicrob. Chemother. 1993; 31: 6818.
  • 31
    Sethi S. Bacteria in exacerbations of chronic obstructive pulmonary disease: phenomenon or epiphenomenon? Proc. Am. Thorac. Soc. 2004; 1: 10914.