SEARCH

SEARCH BY CITATION

Keywords:

  • area-wide management;
  • brassica pests;
  • Helicoverpa;
  • insecticide costs;
  • pest management

Abstract

The acronym IPM (integrated pest management) has been around for over 50 years and now not only supposedly guides research and extension in pest management but also markets pesticides, is claimed to be undertaken by many growers, and even resonates with public perceptions and politicians. Whether or not IPM programs are sustainable in the longer term under the conflicting stresses and strains of the modern agricultural environment is debatable. We analyse three case studies of IPM development in Australia: citrus IPM in central Queensland, Brassica IPM in southeast Queensland and Helicoverpa management in cotton in eastern Australia. Many management practices for these pests have changed over time. In the more stable citrus system classical biological control along with changed practices (reduced pesticide use) have effectively controlled imported scale insect pests. In Brassicas and cotton, IPM is predominantly of the sample and spray variety where, increasingly, less broad-spectrum insecticides are used and, in cotton, Helicoverpa management includes the deployment of transgenic plants. We question whether or not IPM principles are always consistent with market forces and whether or not the approach is universally applicable for all pest insects when implemented at the small (field or farm) scale. Farmers will adopt cost-effective approaches that minimise their financial risks. For Australia as a whole over the last 30 years insecticide input costs per hectare have increased faster than the price index, reflecting more costly insecticides, changes to the combinations of crops grown and an increase in the overall area of crops cultivated together with possible concomitant changes in pest abundance. Any pest crisis will ensure rapid changes in practice and adoption of technologies, in order to mitigate the short-term financial stresses caused. However, regression to former practices tends to follow (e.g. in Brassica crops). In most cases, we cannot objectively test if changed management practices are responsible for changes in pest abundance, as is often claimed, or if the latter is simply a consequence of the weather and/or related large-scale landscape features (e.g. area of host plants). We argue that for many systems the future of pest management practice will require a change to landscape or area-wide approaches. We suspect, given how entrenched the acronym has become, whatever the nature of the approach it will be called IPM.