Arthropod assemblages in tree canopies: a comparison of orders on box mistletoe (Amyema miquelii) and its host eucalypts

Authors


Present address: School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia (anna.burns@monash.edu).

Abstract

Parasitic plants, such as mistletoes, are important components of tree canopies, providing food and shelter for a range of vertebrates and invertebrates. Arthropods from several orders are known to inhabit mistletoes but no direct comparisons between these plants and their host plants have been conducted until present. In this study, the composition and abundance of arthropods occurring on hemi-parasitic box mistletoe, Amyema miquelii ((Lehm. ex Miq.) Tiegh., Loranthaceae), on Eucalyptus (L., Myrtaceae) trees from the south-west slopes region of eastern Australia were investigated. Here a comparison of the arthropod assemblages at the ordinal level is presented. Specimens of Insecta and Arachnida were sampled from box mistletoe and three of its most common host species, using restricted canopy fogging, in two consecutive years, in nine remnants of grassy-box woodlands. The same 10 arthropod orders were sampled from the mistletoes and their eucalypt hosts but the total density of arthropods was greater on the eucalypt foliage. The latter result might be attributed to the significantly greater nitrogen content of the eucalypt foliage than the mistletoe foliage. One year after de-faunation, all but one of the arthropod orders had re-colonised the mistletoe plants. The total abundance of arthropods (particularly Hemiptera and Hymenoptera) on the mistletoes was greater in the second year of sampling, in which drought conditions occurred. Future research of arthropod assemblages in tree canopies should be more inclusive of the full range of substrates or habitats within canopies. Furthermore, investigation of the nutritional quality of mistletoe foliage compared with their host trees is required for a better understanding of the factors driving variation in community composition of arthropod assemblages.

Ancillary