• 1
    Green CM, Kearns LS, Wu J et al. How significant is a family history of glaucoma? Experience from the Glaucoma Inheritance Study in Tasmania. Clin Experiment Ophthalmol 2007; 35: 7939.
  • 2
    Wolfs RC, Klaver CC, Ramrattan RS et al. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol 1998; 116: 16405.
  • 3
    Charlesworth J, Kramer PL, Dyer T et al. The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest Ophthalmol Vis Sci 2010; 51: 350914.
  • 4
    Stone EM, Fingert JH, Alward WL et al. Identification of a gene causing primary open angle glaucoma. Science 1997; 275: 66870.
  • 5
    Fingert JH. Primary open-angle glaucoma genes. Eye 2011; 25: 58795.
  • 6
    Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 2008; 32: 22734.
  • 7
    Thorleifsson G, Magnusson KP, Sulem P et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007; 317: 1397400.
  • 8
    Schlotzer-Schrehardt U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol 2011; 18: 306.
  • 9
    Abu-Amero KK, Osman EA, Azad MT et al. Lack of association between LOXL1 gene polymorphisms and primary open angle glaucoma in the Saudi Arabian population. Ophthalmic Genet 2011; doi: 10.3109/13816810.2011.575430 [Epub ahead of print].
  • 10
    Chen H, Chen LJ, Zhang M et al. Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Mol Vis 2010; 16: 16777.
  • 11
    Nakano M, Ikeda Y, Taniguchi T et al. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci U S A 2009; 106: 1283842.
  • 12
    Satagopan JM, Venkatraman ES, Begg CB. Two-stage designs for gene-disease association studies with sample size constraints. Biometrics 2004; 60: 58997.
  • 13
    Iwase A, Suzuki Y, Araie M et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology 2004; 111: 16418.
  • 14
    Meguro A, Inoko H, Ota M, Mizuki N, Bahram S. Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology 2010; 117: 13318 e5.
  • 15
    Hewitt AW, Sharma S, Burdon KP et al. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Hum Mol Genet 2008; 17: 71016.
  • 16
    Thorleifsson G, Walters GB, Hewitt AW et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 2010; 42: 9069.
  • 17
    Kuehn MH, Wang K, Roos B et al. Chromosome 7q31 POAG locus: ocular expression of caveolins and lack of association with POAG in a US cohort. Mol Vis 2011; 17: 4305.
  • 18
    Beavis W. The power and deceit of {QTL} experiments: lessons from comparative {QTL} studies. In: Wilkinson DB, ed. Proceedings of the Corn and Sorghum Industry Research Conference1994. Washington D.C.: American Seed Trade Association, 1994; 25066.
  • 19
    Wiggs JL, Hee Kang J, Yaspan BL et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet 2011; 20: 470713.
  • 20
    Burdon KP, Macgregor S, Hewitt AW et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 2011; 43: 5748.
  • 21
    Xin B, Puffenberger EG, Turben S et al. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation. Proc Natl Acad Sci U S A 2010; 107: 25863.
  • 22
    Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 2011; 71: 53659.
  • 23
    Macgregor S, Hewitt AW, Hysi PG et al. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet 2010; 19: 271624.
  • 24
    Ramdas WD, van Koolwijk LM, Ikram MK et al. A genome-wide association study of optic disc parameters. PLoS Genet 2010; 6: e1000978.
  • 25
    Lu Y, Dimasi D, Hysi P et al. Common genetic variants near the Brittle Cornea Syndrome Locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet 2010; 13: e1000947.
  • 26
    Vitart V, Bencic G, Hayward C et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet 2010; 19: 430411.
  • 27
    Vithana EN, Aung T, Khor CC et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 2011; 20: 64958.
  • 28
    Cornes BK, Khor CC, Nongpiur ME et al. Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations. Hum Mol Genet 2011; 21: 43745.
  • 29
    Khor CC, Ramdas WD, Vithana EN et al. Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet 2011; 20: 186472.
  • 30
    Christensen AE, Knappskog PM, Midtbo M et al. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest Ophthalmol Vis Sci 2010; 51: 4752.
  • 31
    Ramdas WD, van Koolwijk LM, Lemij HG et al. Common genetic variants associated with open-angle glaucoma. Hum Mol Genet 2011; 20: 246471.
  • 32
    Fan BJ, Wang DY, Pasquale LR, Haines JL, Wiggs JL. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Invest Ophthalmol Vis Sci 2011; 52: 178892.