• 1
    European Glaucoma Society. Terminology and Guidelines for Glaucoma, 3rd edn. Savona: Editrice Dogma, 2008. Italy Editrice Dogma 2008; Available from:
  • 2
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363: 171120.
  • 3
    Keltner JL, Johnson CA, Anderson DR et al. The association between glaucomatous visual fields and optic nerve head features in the ocular hypertension treatment study. Ophthalmology 2006; 113: 160312.
  • 4
    Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003; 121: 4856.
  • 5
    Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I. Results of the European glaucoma prevention study. Ophthalmology 2005; 112: 36675.
  • 6
    Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations. Trans Am Acad Ophthalmol Otolaryngol 1974; 78: OP25574.
  • 7
    Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107: 45364.
  • 8
    Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 224250.
  • 9
    Ederer F, Gaasterland DA, Dally LG et al. The Advanced Glaucoma Intervention Study (AGIS): 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 2004; 111: 65164.
  • 10
    Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA. Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 2002; 43: 221320.
  • 11
    Reus NJ, Lemij HG. The relationship between standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci 2004; 45: 8405.
  • 12
    Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 2000; 41: 177482.
  • 13
    Schlottmann PG, De Cilla S, Greenfield DS, Caprioli J, Garway-Heath DF. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry. Invest Ophthalmol Vis Sci 2004; 45: 18239.
  • 14
    Hood DC, Greenstein VC, Odel JG et al. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 2002; 120: 167281.
  • 15
    Yang A, Swanson WH. A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology 2007; 114: 6719.
  • 16
    Shafi A, Swanson WH, Dul MW. Structure and function in patients with glaucomatous defects near fixation. Optom Vis Sci 2011; 88: 1309.
  • 17
    Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 2007; 26: 688710.
  • 18
    Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA. Structure-function relationships using the cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma 2012; 21: 4954.
  • 19
    Glezer VD. The receptive fields of the retina. Vision Res 1965; 5: 497525.
  • 20
    Davila KD, Geisler WS. The relative contributions of pre-neural and neural factors to areal summation in the fovea. Vision Res 1991; 31: 136980.
  • 21
    Pan F, Swanson WH. A cortical pooling model of spatial summation for perimetric stimuli. J Vis 2006; 6: 115971.
  • 22
    Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma 1994; 3 (Suppl. 1): S3244.
  • 23
    Pearson PM, Schmidt LA, Ly-Schroeder E, Swanson WH. Ganglion cell loss and age-related visual loss: a cortical pooling analysis. Optom Vis Sci 2006; 83: 44454.
  • 24
    Pan F, Swanson WH, Dul MW. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability. Optom Vis Sci 2006; 83: 499511.
  • 25
    Sun H, Dul MW, Swanson WH. Linearity can account for the similarity among conventional, frequency-doubling, and gabor-based perimetric tests in the glaucomatous macula. Optom Vis Sci 2006; 83: 45565.
  • 26
    Gardiner SK, Swanson WH, Demirel S, McKendrick AM, Turpin A, Johnson CA. A two-stage neural spiking model of visual contrast detection in perimetry. Vision Res 2008; 48: 185969.
  • 27
    Keltgen KM, Swanson WH. Estimation of spatial scale across the visual field using sinusoidal stimuli. Invest Ophthalmol Vis Sci 2012; 53: 6339.
  • 28
    Fellman RL, Lynn JR, Starita RJ, Swanson WH. Clinical Importance of Spatial Summation in Glaucoma. In: Heijl A, ed. Perimetry Update 1988/89. Berkeley: Kugler & Ghedini, 1989; 31324. The Hague (Netherlands). 1989.
  • 29
    Wilson ME. Spatial and temporal summation in impaired regions of the visual field. J Physiol 1967; 189: 189208.
  • 30
    Dannheim F, Drance SM. Psychovisual disturbances in glaucoma. A study of temporal and spatial summation. Arch Ophthalmol 1974; 91: 4638.
  • 31
    Redmond T, Garway-Heath DF, Zlatkova M, Anderson RS. Sensitivity loss in early glaucoma can be mapped to an enlargement of the area of complete spatial summation. Invest Ophthalmol Vis Sci 2010; 51: 65408.
  • 32
    Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol 1980; 98: 4905.
  • 33
    Yablonski ME, Zimmerman TJ, Kass MA, Becker B. Prognostic significance of optic disk cupping in ocular hypertensive patients. Am J Ophthalmol 1980; 89: 58592.
  • 34
    Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982; 100: 13546.
  • 35
    Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, Krieglstein GK. Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 1999; 44 (Suppl. 1): S4153.
  • 36
    Airaksinen PJ, Drance SM, Douglas GR, Schulzer M. Neuroretinal rim areas and visual field indices in glaucoma. Am J Ophthalmol 1985; 99: 10710.
  • 37
    Jonas JB, Grundler AE. Correlation between mean visual field loss and morphometric optic disk variables in the open-angle glaucomas. Am J Ophthalmol 1997; 124: 48897.
  • 38
    Swanson WH, Felius J, Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci 2004; 45: 46672.
  • 39
    Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 2006; 47: 200610.
  • 40
    Garway-Heath DF, McNaught AI, Jansonius NM, Heijl A, Bengtsson B, Anderson DR, Swanson WH. Visual Function Progression. In: Weinreb RN, Garway-Heath DF, Leung C, Crowston JG, Medeiros FA, eds. Progression of Glaucoma, World Glaucoma Associa-Consensus Series 8 Progression of Glaucoma; 2011: Amsterdam, the Netherlands: Kugler Publications, 2011.
  • 41
    Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41: 7418.
  • 42
    Ohba N, Nakao K, Isashiki Y, Ohba A. The 100 most frequently cited articles in ophthalmology journals. Arch Ophthalmol 2007; 125: 95260.
  • 43
    Nouri-Mahdavi K, Nassiri N, Giangiacomo A, Caprioli J. Detection of visual field progression in glaucoma with standard achromatic perimetry: a review and practical implications. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1593616.
  • 44
    Chan HH, Ng YF, Chu PH. Applications of the multifocal electroretinogram in the detection of glaucoma. Clin Exp Optom 2011; 94: 24758.
  • 45
    Parikh RS, Parikh SR, Thomas R. Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol 2010; 94: 197201.
  • 46
    Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Brusini P. Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye (Lond) 2010; 24: 83542.
  • 47
    Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 141221.
  • 48
    Turalba AV, Grosskreutz C. A review of current technology used in evaluating visual function in glaucoma. Semin Ophthalmol 2010; 25: 30916.
  • 49
    Kass MA, Heuer DK, Higginbotham EJ et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 70113. discussion 829–30.
  • 50
    Heijl A, Leske MC, Bengtsson B, Hyman L, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 126879.
  • 51
    Deleon-Ortega JE, Arthur SN, McGwin G Jr, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 2006; 47: 337480.
  • 52
    Sample PA, Medeiros FA, Racette L et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 2006; 47: 33819.
  • 53
    Garway-Heath DF, Hitchings RA. Sources of bias in studies of optic disc and retinal nerve fibre layer morphology. Br J Ophthalmol 1998; 82: 986.
  • 54
    Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 2006; 47: 290410.
  • 55
    Artes PH, Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res 2005; 24: 33354.
  • 56
    Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL 3rd. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 2007; 48: 76373.
  • 57
    Ventura LM, Sorokac N, De Los Santos R, Feuer WJ, Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 390411.
  • 58
    Ventura LM, Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology 2005; 112: 207.
  • 59
    Sun H, Swanson WH, Arvidson B, Dul MW. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vision Res 2008; 48: 263341.
  • 60
    Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 2009; 50: 425466.
  • 61
    Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004; 45: 315260.
  • 62
    Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29: 24971.
  • 63
    Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 2006; 124: 8539.
  • 64
    Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 2007; 47: 290111.
  • 65
    Drasdo N, Mortlock KE, North RV. Ganglion cell loss and dysfunction: relationship to perimetric sensitivity. Optom Vis Sci 2008; 85: 103642.
  • 66
    Anderson DR, Knighton RW. Perimetry and acuity perimetry. In: Shields MB, Pollack IP, Kolker AE, eds. Perspectives in Glaucoma. Thorofare, NJ: Slack, Inc., 1988; 5970.
  • 67
    Heijl A, Lindgren G, Olsson J. Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol 1987; 105: 15449.
  • 68
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 525.
  • 69
    Wilson ME. Invariant features of spatial summation with changing locus in the visual field. J Physiol 1970; 207: 61122.
  • 70
    Robson JG, Graham N. Probability summation and regional variation in contrast sensitivity across the visual field. Vision Res 1981; 21: 40918.
  • 71
    Varma R, Quigley HA, Pease ME. Changes in optic disk characteristics and number of nerve fibers in experimental glaucoma. Am J Ophthalmol 1992; 114: 5549.
  • 72
    Yucel YH, Gupta N, Kalichman MW et al. Relationship of optic disc topography to optic nerve fiber number in glaucoma. Arch Ophthalmol 1998; 116: 4937.
  • 73
    Zhang X, Bregman CJ, Raza AS, De Moraes G, Hood DC. Deriving visual field loss based upon OCT of inner retinal thicknesses of the macula. Biomed Opt Express 2011; 2: 173442.
  • 74
    Raza AS, Cho J, de Moraes CG et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 2011; 129: 152936.
  • 75
    Bergin C, Redmond T, Nathwani N et al. The effect of induced intraocular straylight on perimetric tests. Invest Ophthalmol Vis Sci 2011; 52: 367682.
  • 76
    Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 2000; 107: 180915.
  • 77
    Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol (Copenh) 1990; 68: 56874.
  • 78
    Wirtschafter JD, Becker WL, Howe JB, Younge BR. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors. Ophthalmology 1982; 89: 25567.
  • 79
    Gardiner SK, Johnson CA, Cioffi GA. Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci 2005; 46: 371217.
  • 80
    Jansonius NM, Nevalainen J, Selig B et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res 2009; 49: 215763.
  • 81
    Turpin A, Sampson GP, McKendrick AM. Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map. Invest Ophthalmol Vis Sci 2009; 50: 324956.
  • 82
    Racette L, Medeiros FA, Bowd C, Zangwill LM, Weinreb RN, Sample PA. The impact of the perimetric measurement scale, sample composition, and statistical method on the structure-function relationship in glaucoma. J Glaucoma 2007; 16: 67684.
  • 83
    Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 2002; 43: 26549.
  • 84
    Heijl A, Lindgren A, Lindgren G. Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 1989; 108: 1305.
  • 85
    Piltz JR, Starita RJ. Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 1990; 109: 10911.
  • 86
    Hot A, Dul MW, Swanson WH. Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci 2008; 49: 304957.
  • 87
    Strouthidis NG, White ET, Owen VM, Ho TA, Hammond CJ, Garway-Heath DF. Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol 2005; 89: 142732.
  • 88
    Sihota R, Gulati V, Agarwal HC, Saxena R, Sharma A, Pandey RM. Variables affecting test-retest variability of Heidelberg Retina Tomograph II stereometric parameters. J Glaucoma 2002; 11: 3218.
  • 89
    Wu Z, Vazeen M, Varma R et al. Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology 2007; 114: 150512.
  • 90
    Mwanza JC, Gendy MG, Feuer WJ, Shi W, Budenz DL. Effects of changing operators and instruments on time-domain and spectral-domain OCT measurements of retinal nerve fiber layer thickness. Ophthalmic Surg Lasers Imaging 2011; 42: 32837.
  • 91
    Grewal DS, Sehi M, Cook RJ, Greenfield DS. The impact of retardance pattern variability on nerve fiber layer measurements over time using GDx with variable and enhanced corneal compensation. Invest Ophthalmol Vis Sci 2011; 52: 451624.
  • 92
    Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fibre layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Br J Ophthalmol 2011; 95: 6858.
  • 93
    Ajtony C, Balla Z, Somoskeoy S, Kovacs B. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 2007; 48: 25863.
  • 94
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 30710.
  • 95
    Gonzalez-Hernandez M, Pablo LE, Armas-Dominguez K, de la Vega RR, Ferreras A, de la Rosa MG. Structure-function relationship depends on glaucoma severity. Br J Ophthalmol 2009; 93: 11959.
  • 96
    Robin TA, Muller A, Rait J, Keeffe JE, Taylor HR, Mukesh BN. Performance of community-based glaucoma screening using Frequency Doubling Technology and Heidelberg Retinal Tomography. Ophthalmic Epidemiol 2005; 12: 16778.
  • 97
    Bizios D, Heijl A, Bengtsson B. Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics. BMC Ophthalmol 2011; 11: 20.
  • 98
    Zhu H, Crabb DP, Schlottmann PG et al. Predicting visual function from the measurements of retinal nerve fiber layer structure. Invest Ophthalmol Vis Sci 2010; 51: 565766.
  • 99
    Medeiros FA, Leite MT, Zangwill LM, Weinreb RN. Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. Invest Ophthalmol Vis Sci 2011; 52: 5794803.