• biogeography;
  • coral reefs;
  • fish;
  • gene flow;
  • molecular techniques;
  • phylogeny

Abstract Coral-reef fishes, like many other marine organisms, generally possess a benthic adult stage and pelagic larval stage. What can population genetics studies tell us about the demographic, evolutionary and biogeographic consequences of this life cycle? Ten studies of geographical patterns of intraspecific genetic differentiation in reef fishes have been published. These studies have included 2t > species/species complexes (14 in the family Pomacentridae, the remaining 12 in 9 different families) and have been about equally divided between the tropical Pacific and the tropical western Atlantic. A survey of these studies shows the following: (i) the existence of the pelagic larval stage appears to have led to high levels of gene flow even among populations separated by thousands of kilometres of open ocean; (ii) an apparent pattern of increased gene flow among populations connected by intermediate 'stepping stones’; (iii) very tentative evidence for a relationship between length of pelagic larval life and gene flow; (iv) no clear relationship between egg type (pelagic rs non-pelagic) and gene flow; and (v) suggestive evidence that damselfishes (family Pomacentridae) may have more restricted dispersal (less gene flow) than other reef fishes. The application of current and future molecular tools has the strong potential to clarify some of these relationships, particularly by using relatively neutral genetic markers. Additionally, discoveries of DNA markers having very high rates of mutation may allow tracking of demographically relevant levels of larval dispersal. Molecular tools are becoming especially valuable in uncovering the biogeographic and phylogenetic history of reef fishes. The one molecular study to date has suggested that at least some speciation events may have occurred during the climate changes and sea-level regressions associated with Pleistocene glacial episodes. Molecular tools need to be used to further explore the means by which high species diversity can be generated in the face of the apparently high gene flow observed in most coral-reef fishes.