• antipredator;
  • Carlia jarnoldae;
  • energy;
  • mating success;
  • tail loss

Abstract  Antipredator mechanisms employed by animals are obviously beneficial if they increase survival, but their use may be costly and decrease fitness. Fitness costs of antipredator mechanisms may, in turn, be defrayed by behavioural compensation. We used lizards as a model to measure behavioural fitness costs of the antipredator mechanism, autotomy, as they commonly lose their tails when attacked by predators. In addition, we examined whether male skinks, Carlia jarnoldae (Scincidae), behaviourally compensate for tail loss by comparing the behaviour of tailed and tailless males in experimental enclosures, either alone, with a conspecific male or female, or with a predator. Tailless males experience several costs of autotomy including reduced energy stores, and loss of autotomy as a defence. We identified an additional cost of tail loss: reduced mating success. However, this species did not behaviourally compensate these costs. Instead, characteristics of the ecology of C. jarnoldae may minimize the costs of autotomy. This species experiences an extended breeding season, which means that they experience reduced mating success for only 20% of this breeding season. Additionally, the presence of inguinal fat stores which supply energy in addition to stores in the tail reduce energetic costs.