• Australia;
  • El Niño;
  • fire;
  • rainforest;
  • resprouting

Abstract  In 2002, fire burnt areas of Mesophyll- and Notophyll Vine Forest in the Smithfield Conservation Park near Cairns, Australia. We assessed the ability of rainforest plant species to persist through fire via resprouting. Natural rates of mortality and resprouting in unburnt areas were assessed for all saplings (stems < 2 m) via 13, 2 × 50 m belt transects, and compared to estimates of mortality and resprouting in 26 transects in burnt areas. We also tested the resprouting ability per-individual stem of each species against all other stems with which it co-occurred. Totals of 1242 stems (138 species) were sampled in burnt transects and 503 stems (95 species) in unburnt transects (total number of unique species = 169). There was no difference in the number of stems existing prior to the fire in burnt and unburnt areas when expressed on a per-sample area basis. Resprouting from basal shoots and root suckers was significantly greater in burnt than in unburnt areas, but rates of stem sprouting were not different. In burnt areas 72 species were tested for resprouting ability and most (65/72) resprouted at similar rates. All species analysed contained individuals that resprouted. The resprouting response of five species was significantly lower, and in two species was significantly higher. For these species especially, fire may act as a mechanism altering relative abundances. The fire coincided with an extreme El Niño event. Current predictions indicate El Niño conditions may become increasingly common, suggesting fire events within rainforest could become more frequent. Resprouting as a general phenomenon of rainforest species, and differential resprouting ability between species should therefore be an important consideration in assessing the potential path of vegetation change in rainforests after fire.