Get access

Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs



The disappearance of amphibian populations from seemingly pristine upland areas worldwide has become a major focus of conservation efforts in the last two decades, and a parasitic chytrid fungus, Batrachochytrium dendrobatidis, is thought to be the causative agent of the population declines. We examined the altitudinal distribution of chytrid infections in three stream-dwelling frog species (Litoria wilcoxii, L. pearsoniana and L. chloris) in southeast Queensland, Australia, and hypothesized that if B. dendrobatidis were responsible for the disappearance of high-altitude frog populations, infection prevalence and intensity would be greatest at higher altitudes. Overall, 37.7% of the 798 adult frogs we sampled were infected with B. dendrobatidis, and infections were found in all the populations we examined. Contrary to our initial hypothesis, we found no consistent evidence that high-altitude frogs were more likely to be infected than were lowland frogs. Further, the intensity of fungal infections (number of zoospores) on high-altitude frogs did not differ significantly from that of lowland frogs. Batrachochytrium dendrobatidis appears to be capable of infecting frogs at all altitudes in the subtropics, suggesting that all populations are at risk of decline when conditions favour disease outbreaks. We did find evidence, however, that chytrid infections persist longer into summer in upland as compared with lowland areas, suggesting that montane amphibian populations remain susceptible to disease outbreaks for longer periods than do lowland populations. Further, we found that at high altitudes, temperatures optimal for chytrid growth and reproduction coincide with frog metamorphosis, the life-stage at which frogs are most susceptible to chytrid infections. While these altitudinal differences may account for the differential population-level responses to the presence of B. dendrobatidis, the reason why many of southeast Queensland's montane frog populations declined precipitously while lowland populations remained stable has yet to be resolved.