• arboreal mammal;
  • hurricane;
  • possum;
  • resilience;
  • tree-kangaroo

Abstract  Intense cyclones might be expected to adversely affect populations of arboreal mammals, either directly or as a consequence of the destruction of food resources and other key habitat elements. However, such impacts have rarely been quantified. The present study examined the response of five species of arboreal folivorous marsupials to Severe Cyclone Larry at nine sites in upland rainforests of the Atherton Tableland, north-east Australia. Sites were originally surveyed for folivores in 1995–1997, and then resurveyed in 2006, 6–8 months after Cyclone Larry had traversed the region. All sites showed evidence of structural damage to vegetation, but overall damage levels (assessed in terms of canopy cover, damage to trees, basal area of dead trees and volume of woody debris) decreased from east to west across the study region. The detectability of rainforest possums increased after the cyclone. For the most commonly observed species, the proportion of individuals observed >5 m from survey transects was correlated with the amount of structural damage to vegetation. To avoid confounding changes in detectability with changes in abundance, only observations close (<5 m) to transects were used to estimate folivore abundance before and after the cyclone. On this basis, there were no significant differences between pre- and post-cyclone abundance estimates for any folivore species. Further, changes in folivore abundance after the cyclone were not correlated with damage to vegetation across sites. Cyclone Larry does not appear to have caused a catastrophic loss of key habitat resources for marsupial folivores at the sites surveyed. The high degree of folivory practiced by marsupial folivores may help make them resilient to cyclone impacts. These conclusions are more robust for three commonly observed folivore species (Hemibelideus lemuroides, Pseudochirulus herbertensis and Trichosurus vulpecula johnstonii) than for two less frequently encountered species (Pseudochirops archeri and Dendrolagus lumholtzi).