• 1
    Bowmaker JK. Evolution of colour vision in vertebrates. Eye 1998; 12: 541547.
  • 2
    OOta S, Saitou N. Phylogenetic relationship of muscle tissues deduced from super-imposition of gene trees. Mol Biol Evol 1999; 16: 856867.
  • 3
    Robinson SR. Early vertebrate colour vision. Nature 1994; 367: 121.
  • 4
    Collin SP, Potter IC, Braekevelt CR. The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behav Evol 1999; 54: 96118.
  • 5
    Schultze MJS. Zur Anatomie und Physiologic der Retina. Arch f mikr Anat 1866, 2: 175286.
  • 6
    Walls GL. The vertebrate eye and its adaptive radiation. Bloomfield Hills : Cranbrook Press; 1942.
  • 7
    Cohen AI. Rods and cones. In: FuortesMGF, ed. Handbook of Sensory Physiology. Vol VII/2. New York : Springer; 1972. p 63110.
  • 8
    Dartnall HJA, Bowmaker JK, Mollon JD. Human visual pigments: microspectropho-tometric results from the eyes of seven persons. Proc Roy Soc Lond B 1983; 220: 115130.
  • 9
    Jacobs GH, Neitz J, Deegan II JF. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 1991; 353: 655656.
  • 10
    Jacobs GH, Fenwick JA, Williams GA. Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol 2001; 204: 24392446.
  • 11
    Goldsmith TH. Humming birds see near UV light. Science 1980; 207: 786788.
  • 12
    Chen DM, Goldsmith TH. Four spectral classes of cones in the rednas of birds. J Comp Physiol A 1986; 159: 473479.
  • 13
    Bowmaker JK, Thorpe A, Douglas RH. Ultraviolet-sensitive cones in die goldfish. Vision Res 1991; 3: 349352.
  • 14
    Hawryshyn CW, Harosi FI. Ultraviolet pho-toreception in carp: microspectropho-tometry and behaviourally determined action spectra. Vision Res 1991; 31: 567576.
  • 15
    Bowmaker JK. The visual pigments of fish. Prog Ret Eye Res 1995; 15: 131.
  • 16
    Nadians J, Thomas D, Hogness DS. Molecular genetics of human colour vision: the genes encoding blue, green and red pigments. Science 1986; 232: 193202.
  • 17
    Partridge JC, The colour sensitivity and vision of fishes. In: HerringPJ, Campbell, AK, WhitfieldM, MaddockL, eds. Light and Life in die Sea. Cambridge UK : Cambridge University Press; 1995. p 167184.
  • 18
    Yokoyama S. Molecular genetic basis of adaptive selection: examples from colour vision in vertebrates. Ann Rev Genet 1997; 31: 315336.
  • 19
    Hardisty MW. Lampreys and hagfishes: analysis of cyclostome relationships. In: HardistyMW, PotterIC, eds. The Biology of Lampreys. Vol. 4B. London : Academic Press; 1982. p 165259.
  • 20
    Xian-guang H, Aldridge RJ, Siveter DJ, Siveter DJ, Xiang-hong F. New evidence on die anatomy and phylogeny of the earliest vertebrates. Proc Roy Soc Land B 2002; 269: 18651869.
  • 21
    Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ. Head and backbone of die early Cambrian vertebrate Haikouichthys. Nature 2003; 421: 526529.
  • 22
    Kobayashi H. On the photo-perceptive function in the eye of the hagfish, Myxine garmaniJordan et Snyder. J Shimoneseki Coll Fish 1964; 13: 6783.
  • 23
    Locket NA, Jorgensen JM. The eyes of hagfishes. In: JorgensenJM, LomholtJP, WeberRE, MakeH, eds. The Biology of Hagfishes. London : Chapman and Hall; 1998. p 541556.
  • 24
    Vigh-Teichmann I, Vigh B, Olsson R, van Veen T. Opsin-immunoreactive outer segments of photoreceptors in die eye and in die lumen of die optic nerve of die hagfish, Myxine glutinosa. Cell Tiss Res 1984; 238: 515522.
  • 25
    Crescitelli F. The visual cells and visual pigments of die vertebrate eye. In: DartnallHJA, ed. Handbook of Sensory Physiology. VII/1, Photochemistry of Vision. Berlin : Springer-Verlag; 1972. p 245363.
  • 26
    Öhman P. The photoreceptor outer segments of the river lamprey (Lampetra fluviatilis). An electron-fluorescence and light microscopic study. Acta Zool Stockh 1971; 52: 287297.
  • 27
    Dickson DH, Graves DA. Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L). Exp Eye Res 1979; 29: 4560.
  • 28
    Tonosaki A, Washioka H, Hara M, Ishikawa M, Watanabe H. Photoreceptor disc membranes of Lampetra japonica. Neurosci Res 1989; 6: 340349.
  • 29
    Govardovskii VI, Lychakov DV. Visual cells and visual pigments of the lamprey, Lampetra fluviatilis L. J Comp Physiol A 1984; 154: 279286.
  • 30
    Harosi FI, Kleinschmidt J. Visual pigments in die sea lamprey, Petromyzon marinus. Vis Neurosci 1993; 10: 711715.
  • 31
    Collin SP, Hart NS, Shand J, Potter IC. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Vis Neurosci 2003; 20: 119130.
  • 32
    Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci 1992; 89: 59325936.
  • 33
    Yokoyama S, Yokoyama R. Adaptive evolution of photoreceptors and visual pigments in vertebrates. Ann Rev Ecol Syst 1996; 27: 543567.
  • 34
    Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Ret Eye Res 2000; 19: 385419.
  • 35
    Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biol 2003; 13: R864R865.
  • 36
    Collin SP, Trezise, AEO. The evolution of visual pigments and color vision in vertebrates. Brain Behav Evol 2002; 60: 6061.
  • 37
    Novitskaya LI. Definitive morphology of palaeozoic agnathans (Heterostraci, Osteostraci) as information on their ontogenetic type and phylogenetic relationships. Modern Geol 1993; 18: 115124.
  • 38
    Lythgoe JN. Vision in fishes. In: AliMA, ed. Environmental Physiology of Fishes. New York : Plenum Publishing Corporation; 1980. p 431445.
  • 39
    Hawryshyn CW. Vision. In: EvansDH, ed. The Physiology of Fishes. 2nd ed. Florida USA : CRC Press LLC; 1998. p 345374.
  • 40
    Maximovs VV. Environmental factors which may have led to the appearance of colour vision. Phil Trans Roy Soc Land B 2000; 355: 12391242.
  • 41
    Parker AR. Colour in Burgess shale animals and die effect of light on evolution in the Cambrian. Proc Roy Soc Lond B 1998; 265: 967972.
  • 42
    Fein A, Szuts EZ. Photoreceptors: Their Role in Vision. Cambridge UK : Cambridge University Press; 1982.
  • 43
    Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass LA, Robbins JT. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 2000; 27: 513523.
  • 44
    Parry JW, Bowmaker JK. Visual pigment co-expression in guinea pig cones: a micro-spectrophotometric study. Invest Ophthalmol Vis Sci 2002; 43: 16621665.
  • 45
    Helvik JV, Drivenes O, Naess TH, Fjose A, Seo HC. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). J Exp Biol 2001; 14: 25532559.
  • 46
    Archer S, Hope A, Partridge JC. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Roy Soc Lond B Biol Sci 1995; 262: 289295.
  • 47
    Hope AJ, Partridge JC, Hayes PK. Switch in rod opsin gene expression in the European eel, Anguilta anguilla (L.). Proc Roy Soc Lond B Biol Sci 1998; 265: 869874.
  • 48
    Cheng CL, Novales Flamarique I. New mechanism for modulating colour vision. Nature 2004; 428: 279.