SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Atchison DA. Recent advances in representation of monochromatic aberrations of human eyes. Clin Exp Optom 2004; 87: 138148.
  • 2
    American National Standards Institute. American National Standard for Ophthalmics—Methods for reporting optical aberrations of the eye; 2004: ANSI Z80.28–2004.
  • 3
    MacRaeSM, KruegerRR, ApplegateRA, eds. Customized Corneal Ablation: The Quest for Super Vision. Thorofare: Slack Incorporated; 2001.
  • 4
    KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest For Super Vision II. Thorofare: Slack Incorporated; 2004.
  • 5
    Young T. The Bakerian Lecture. On the mechanism of the eye. Philosophical Transactions of the Royal Society of London Part 1 1801: 2388.
  • 6
    Atchison DA, Smith G. Optics of the Human Eye. Oxford: Butterworth-Heinemann; 2000.
  • 7
    Howland B., Howland HC. Subjective measurement of high-order aberrations of the eye. Science 1976; 193: 580582.
  • 8
    Walsh G., Charman WN, Howland HC. Objective technique for the determination of monochromatic aberrations of the human eye. J Opt Soc Am A 1984; 1: 987992.
  • 9
    Walsh G., Charman WN. Measurement of the axial wavefront aberration of the human eye. Ophthalmic Physiol Opt 1985; 5: 2331.
  • 10
    Atchison DA, Collins MJ, Wildsoet CF, Christensen J., Waterworth MD. Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vision Res 1995; 35: 313323.
  • 11
    Walsh G., Cox MJ. A new computerised video-aberroscope for the determination of the aberration of the human eye. Ophthalmic Physiol Opt 1995; 15: 403408.
  • 12
    Smith G., Applegate RA, Howland HC. The cross-cylinder aberroscope: an alternative method of calculation of the aberrations. Ophthalmic Physiol Opt 1996; 16: 222229.
  • 13
    Cox MJ, Atchison DA, Scott DH. Scatter and its implications for the measurement of optical image quality in human eyes. Optom Vis Sci 2003; 80: 5868.
  • 14
    Navarro R., Losada MA. Aberrations and relative efficiency of light pencils in the living human eye. Optom Vis Sci 1997; 74: 540547.
  • 15
    Llorente L., Diaz-Santana L., Lara-Saucedo D., Marcos S. Aberrations of the human eye in visible and near infrared illumination. Optom Vis Sci 2003; 80: 2635.
  • 16
    Mierdel P., Kaemmerer M., Mrochen M., Krinke HE, Seiler T. Ocular optical aberrometer for clinical use. J Biomed Opt 2001; 6: 200204.
  • 17
    Mrochen M., Donitzky C., Wullner C., Loffler J. Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg 2004; 30: 775785.
  • 18
    Liang J., Grimm B., Goelz S., Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A 1994; 11: 19491957.
  • 19
    Liang J., Williams DR. Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A 1997; 14: 28732883.
  • 20
    Liang J., Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A 1997; 14: 28842892.
  • 21
    Donnelly WJ, Pesudovs K., Marsack JD, Sarver EJ, Applegate RA. Quantifying scatter in Shack-Hartmann images to evaluate nuclear cataract. J Refract Surg 2004; 20: S515S522.
  • 22
    MacRae SM, Fujieda M. Customized corneal ablation. In: MacRaeSM, KruegerRR, ApplegateRA, eds. Customized Corneal Ablation: The Quest for Super Vision. Thorofare: Slack Incorporated; 2001. p 211217.
  • 23
    Hieda O., Kinoshita S. Measuring of ocular wavefront aberration in large pupils using OPD-scan. Semin Ophthalmol 2003; 18: 3540.
  • 24
    Buscemi PM. Retinoscope double pass aberrometry: principles and application of the Nidek OPD-Scan. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront customized visual correction: the quest for super vision II. Thorofare: Slack Incorporated; 2004. p 149153.
  • 25
    Webb RH, Penney CM, Thompson KP. Measurement of ocular local wavefront distortion with a spatially resolved refractometer. Appl Opt 1992; 31: 36783686.
  • 26
    Carr JD, Lichter H., Garcia J., Stulting RD, Thompson KP, Staver PR. Spatially resolved refractometry: principles and application of the Emory Vision InterWave aberrometer. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 155160.
  • 27
    Thompson KP, Staver PR, Garcia JR, Burns SA, Webb RH, Stulting RD. Using inter-wave aberrometry to measure and improve the quality of vision in LASIK surgery. Ophthalmology 2004; 111: 13681379.
  • 28
    Smirnov MS. Measurement of the wave aberration of the human eye. Biofizika 1961; 6: 687703.
  • 29
    Jenkins TCA. Aberrations of the eye and their effects on vision: Part 1. Br J Physiol Opt 1963; 20: 5991.
  • 30
    Woods RL, Bradley A., Atchison DA. Monocular diplopia caused by ocular aberrations and hyperopic defocus. Vision Res 1996; 36: 35973606.
  • 31
    Atchison DA, Scott DH, Joblin A., Smith G. Influence of Stiles-Crawford effect apodization on spatial visual performance with decentered pupils. J Opt Soc Am A 2001; 18: 12011211.
  • 32
    López-Gil N., Howland HC. Measurement of the eye's near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique. Vision Res 1999; 39: 20312037.
  • 33
    Marcos S., Burns SA, Moreno-Barriuso E., Navarro R. A new approach to the study of ocular chromatic aberrations. Vision Res 1999; 39: 43094323.
  • 34
    Fernández EJ, Unterhuber A., Prieto PM, Hermann B., Drexler W., Artal P. Near infrared ocular wavefront sensing with femtosecond laser. Invest Ophthalmol Vis Sci 2004; 45: E-Abstract 2836.
  • 35
    Salmon TO, Thibos LN, Bradley A. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor. J Opt Soc Am A 1998; 15: 24572465.
  • 36
    Moreno-Barriuso E., Navarro R. Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye. J Opt Soc Am A 2000; 17: 974985.
  • 37
    Moreno-Barriuso E., Marcos S., Navarro R., Burns SA. Comparing laser ray tracing, the spatially resolved refractometer and the Hartmann-Shack sensor to measure the ocular wave aberration. Optom Vis Sci 2001; 78: 152156.
  • 38
    Salmon TO, West RW, Gasser W., Kenmore T. Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer. Optom Vis Sci 2003; 80: 614.
  • 39
    Durrie DS, Stahl ED. Comparing wavefront devices. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 161168.
  • 40
    Porter J., Guirao A., Cox IG, Williams DR. Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A 2001; 18: 17931803.
  • 41
    Thibos LN, Bradley A., Hong X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physiol Opt 2002; 22: 427433.
  • 42
    Thibos LN, Hong X., Bradley A., Cheng X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J Opt Soc Am A 2002; 19: 23292348.
  • 43
    Castejón-Mochón JF, López-Gil N., Benito A., Artal P. Ocular wave-front aberration statistics in a normal young population. Vision Res 2002; 42: 16111617.
  • 44
    Brunette I., Bueno JM, Parent M., Hamam H., Simonet P. Monochromatic aberrations as a function of age, from childhood to advanced age. Invest Ophthalmol Vis Sci 2003; 44: 54385446.
  • 45
    Wang L., Koch DD. Ocular higher-order aberrations in individuals screened for refractive surgery. J Cataract Refract Surg 2003; 29: 18961903.
  • 46
    Wang Y., Zhao K., Jin Y., Niu Y., Zuo T. Changes of higher order aberration with various pupil sizes in the myopic eye. J Refract Surg 2003; 19: S270S274.
  • 47
    Cheng X., Bradley A., Hong X., Thibos LN. Relationship between refractive error and monochromatic aberrations of the eye. Optom Vis Sci 2003; 80: 4349.
  • 48
    Cheng H., Barnett JK, Vilupuru AS, Marsack JD, Kasthurirangan S., Applegate RA, Roorda A. A population study on changes in wave aberrations with accommodation. J Vis 2004; 4: 272280.
  • 49
    Marcos S., Moreno-Barriuso E., Llorente L., Navarro R., Barbero S. Do myopic eyes suffer from large amounts of aberration? Proceedings of the VIII International Congress on Myopia; 2000: 118121.
  • 50
    He JC, Sun P., Held R., Thorn F., Sun X., Gwiazda JE. Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults. Vision Res 2002; 42: 10631070.
  • 51
    Paquin MP, Hamam H., Simonet P. Objective measurement of optical aberrations in myopic eyes. Optom Vis Sci 2002; 79: 285291.
  • 52
    Carkeet A., Luo HD, Tong L., Saw SM, Tan DT. Refractive error and monochromatic aberrations in Singaporean children. Vision Res 2002; 42: 18091824.
  • 53
    Llorente L., Barbero S., Cano D., Dorronsoro C., Marcos S. Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J Vis 2004; 4: 288298.
  • 54
    Brown NP. The change in lens curvature with age. Exp Eye Res 1974; 19: 175183.
  • 55
    Dubbelman M., van der Heidje GL, Weeber HA. Changes in shape of the aging human crystalline lens with accommodation. Vision Res 2005; 45: 117132.
  • 56
    Brown NP. The change in shape and internal form of the lens of the eye on accommodation. Exp Eye Res 1973; 15: 441459.
  • 57
    Koretz JF, Cook CA, Kaufman PL. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Invest Ophthalmol Vis Sci 1997; 38: 569578.
  • 58
    Dubbelman M., van der Heijde GL, Weeber HA, Vrensen GFJM. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res 2003; 43: 23632375.
  • 59
    Strenk S., Semmlow J., Strenk L., Munoz P., Gronlund-Jacob J., DeMarco J. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 1999; 40: 11621169.
  • 60
    Smith G., Atchison DA, Pierscionek BK. Modelling the power of the aging human eye. J Opt Soc Am A 1992; 9: 21112117.
  • 61
    Gullstrand A. Appendices II and IV. Helmholtz's Handbuch der Physiologischen Optik Vol 1. 3rd ed; 1909. Translation edited by SouthallJP. Optical Society of America 1924: p 301358 and 382–415.
  • 62
    Atchison DA, Smith G. Possible errors in determining axial length changes during accommodation with the IOLMaster. Optom Vis Sci 2004; 81: 283286.
  • 63
    Yasuda A., Yamaguchi T., Ohkoshi K. Corneal steepening during accommodation. J Cataract Refract Surg 2004; 30: 16111612.
  • 64
    Yasuda A., Yamaguchi T., Ohkoshi K. Changes in corneal curvature in accommodation. J Cataract Refract Surg 2003; 29: 12971301.
  • 65
    Pierśscionek BK, Popiolek-Masajada A., Kasprzak H. Corneal shape change during accommodation. Eye 2001; 15: 766769.
  • 66
    He JC, Gwiazda J., Thorn F., Held R. Wave-front aberrations in the anterior corneal surface and the whole eye. J Opt Soc Am A 2003; 20: 11551163.
  • 67
    Buehren T., Collins MJ, Loughridge J., Carney LG, Iskander DR. Corneal topography and accommodation. Cornea 2003; 22: 311316.
  • 68
    Ciuffreda KJ. Accommodation and its abnormalities. In: CharmanWN, ed. Visual Optics and Instrumentation. Basingstoke: Macmillan; 1991. 1/93: p 231279.
  • 69
    Fletcher RJ. Astigmatic accommodation. Parts I-II. Br J Physiol Opt 1951; 8: 7394.
  • 70
    Fletcher RJ. Astigmatic accommodation. Parts III-V. Br J Physiol Opt 1951; 8: 129160.
  • 71
    Fletcher RJ. Astigmatic accommodation. Parts VI-VII. Br J Physiol Opt 1951; 8: 193224.
  • 72
    Fletcher RJ. Astigmatic accommodation. Erratum. Br J Physiol Opt 1952; 9: 117.
  • 73
    Fletcher RJ. Astigmatic accommodation. Parts VII (cont)-IX. Br J Physiol Opt 1952; 9: 832.
  • 74
    Mutti DO, Enlow NL, Mitchell GL. Accommodation and induced with-the-rule astigmatism in emmetropes. Optom Vis Sci 2001; 78: 67.
  • 75
    Millodot M., Thibault C. Variation of astigmatism with accommodation and its relationship with dark focus. Ophthalmic Physiol Opt 1985; 5: 297302.
  • 76
    Ukai K., Ichihashi Y. Changes in ocular astigmatism over the whole range of accommodation. Optom Vis Sci 1991; 68: 813818.
  • 77
    Byakuno I., Okuyama F., Tokoro T. Accommodation in astigmatic eyes. Optom Vis Sci 1994; 71: 323331.
  • 78
    Tsukamoto M., Nakajima K., Nishino J., Hara O., Uozato H., Saishin M. Accommodation causes with-the-rule astigmatism in emmetropes. Optom Vis Sci 2000; 77: 150155.
  • 79
    Tsukamoto M., Nakajima T., Nishino J., Hara Y., Uozato H., Saishin M. The binocular accommodative response in uncorrected ametropia. Optom Vis Sci 2001; 78: 763768.
  • 80
    Koomen M., Tousey R., Scholnik R. The spherical aberration of the eye. J Opt Soc Am 1949; 39: 370376.
  • 81
    Ivanoff A. About the spherical aberration of the eye. J Opt Soc Am 1956; 46: 901903.
  • 82
    Schober H., Munker H., Zolleis F. Die Aberration des menschlichen Auges und ihre Messung. Optica Acta (Lond) 1968; 15: 4757.
  • 83
    Berny F. Étude de la formation des images rétiniennes et détermination de l'aberration de sphéricité de l'oeil humain. Vision Res 1969; 9: 977990.
  • 84
    Collins MJ, Wildsoet CF, Atchison DA. Monochromatic aberrations and myopia. Vision Res 1995; 35: 11571163.
  • 85
    He JC, Burns SA, Marcos S. Monochromatic aberrations in the accommodated human eye. Vision Res 2000; 40: 4148.
  • 86
    Ninomiya S., Fujikado T., Kuroda T., Maeda N., Tano Y., Oshika T., Hirohara Y., Mihashi T. Changes of ocular aberration with accommodation. Am J Ophthalmol 2002; 134: 924926.
  • 87
    Hazel C., Cox MJ, Strang N. Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects. Optom Vis Sci 2003; 80: 151158.
  • 88
    Panagopoulou SI, Plainsis S., MacRae SM, Pallikaris IG. The implications of pupil size and accommodation dynamics on customized wavefront-guided refractive surgery. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 121124.
  • 89
    Katsanevaki VJ, Panagopoulou SI, Plainsis S., Ginis H., Pallikaris I. Accommodation dynamics and its implication on customized corrections. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 115119.
  • 90
    Winn B., Pugh JR, Gilmartin B., Owens H. Arterial pulse modulates steady-state ocular accommodation. Curr Eye Res 1990; 9: 971975.
  • 91
    Collins MJ, Davis B., Wood JM. Microfluctuations of steady-state accommodation and the cardiopulmonary system. Vision Res 1995; 35: 24912502.
  • 92
    Diaz-Santana L., Torti C., Munro I., Gasson P., Dainty JC. Benefit of higher closed-loop bandwidths in ocular adaptive optics. Optics Express 2003; 11: 25972605.
  • 93
    Nirmaier T., Pudasaini G., Bille J. Very fast wave-front measurements of the human eye with a custom CMOS-based Hartmann-Shack sensor. Optics Express 2003; 11: 27042716.
  • 94
    Hofer H., Artal P., Singer B., Aragon J., Williams D. Dynamics of the eye's wave aberration. J Opt Soc Am A 2001; 18: 497506.
  • 95
    Zhu M., Collins MJ, Iskander DR. Microfluctuations of wavefront aberrations of the eye. Ophthalmic Physiol Opt 2004; 24: 562571.
  • 96
    Hofer H., Chen L., Singer B., Yamauchi Y., Williams DR. Improvement in retinal image quality with dynamic correction of the eye's aberrations. Optics Express 2001; 8: 631643.
  • 97
    Fernandez EJ, Iglesias I., Artal P. Closed-loop adaptive optics in the human eye. Optics Letters 2001; 26: 746748.
  • 98
    Artal P., Fernández EJ, Manzanera S. Are optical aberrations during accommodation a significant problem for refractive surgery? J Refract Surg 2002; 18: S563S566.
  • 99
    Owsley C., Sekuler R., Siemsen D. Contrast sensitivity throughout adulthood. Vision Res 1983; 23: 689699.
  • 100
    Elliott DB. Contrast sensitivity decline with ageing: a neural or optical phenomenon? Ophthalmic Physiol Opt 1987; 7: 415419.
  • 101
    Elliott D., Whitaker D., MacVeigh D. Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Res 1990; 30: 541547.
  • 102
    Sloane ME, Owsley C., Alvarez SL. Aging, senile miosis and spatial contrast sensitivity at low luminance. Vision Res 1988; 28: 12351246.
  • 103
    Haegerstrom-Portnoy G., Schneck ME, Brabyn JA. Seeing into old age: vision function beyond acuity. Optom Vis Sci 1999; 76: 141158.
  • 104
    Hayashi K., Hayashi H., Hayashi F. Topographic analysis of the changes in corneal shape due to aging. Cornea 1995; 14: 527532.
  • 105
    Kiely PM, Smith G., Carney LG. The mean shape of the human cornea. Optica Acta (London) 1982; 29: 10271040.
  • 106
    Guillon M., Lydon DP, Wilson C. Corneal topography: a clinical model. Ophthalmic Physiol Opt 1986; 6: 4756.
  • 107
    Dubbelman M., Weeber HA, van der Heijde RG, Volker-Dieben HJ. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol (Copenh) 2002; 80: 379383.
  • 108
    Guirao A., Redondo M., Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A 2000; 17: 16971702.
  • 109
    Smith G., Cox MJ, Calver R., Garner LF. The spherical aberration of the crystalline lens of the human eye. Vision Res 2001; 41: 235243.
  • 110
    Patel S., Marshall J., Fitzke FW. Shape and radius of posterior corneal surface. Refract Corneal Surg 1993; 9: 173181.
  • 111
    Lam AKC, Douthwaite WA. Measurement of posterior corneal asphericity on Hong Kong Chinese: a pilot study. Ophthalmic Physiol Opt 1997; 17: 348356.
  • 112
    Marcos S., Barbero S., McLellan JS, Burns SA. Optical quality of the eye and aging. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 101108.
  • 113
    Niesel P. Visible changes of the lens with age. Trans Ophthalmol Soc U K 1982; 102: 327330.
  • 114
    Koretz JF, Kaufman PL, Neider MW, Goeckner PA. Accommodation and presbyopia in the human eye—aging of the anterior segment. Vision Res 1989; 29: 16851692.
  • 115
    Cook CA, Koretz JF, Pfahnl A., Hyun J., Kaufman PL. Aging of the human crystalline lens and anterior segment. Vision Res 1994; 34: 29452954.
  • 116
    Dubbelman M., van der Heijde GL, Weeber HA. The thickness of the aging human lens obtained from corrected Scheimpflug images. Optom Vis Sci 2001; 78: 411416.
  • 117
    Dubbelman M., van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vision Res 2001; 41: 18671877.
  • 118
    Pierscionek BK, Chan DYC, Ennis JP, Smith G., Augusteyn RC. Non-destructive method of constructing three-dimensional gradient index models for crystalline lenses: I. Theory and experiment. Am J Optom Physiol Opt 1988; 65: 481491.
  • 119
    Pierscionek BK. Refractive index of the human lens surface measured with an optic fibre sensor. Ophthalmic Res 1994; 26: 3235.
  • 120
    Koretz JF, Cook CA. Aging of the optics of the human eye: lens refraction models and principal plane locations. Optom Vis Sci 2001; 78: 396404.
  • 121
    Moffat BA, Atchison DA, Pope JM. Explanation of the lens paradox. Optom Vis Sci 2002; 79: 148150.
  • 122
    Moffat BA, Atchison DA, Pope JM. Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro. Vision Res 2002; 42: 16831693.
  • 123
    Jones CE, Atchison DA, Meder R., Pope JM. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vision Res: in Press.
  • 124
    Hamasaki D., Ong J., Marg E. The amplitude of accommodation in presbyopia. Am J Optom Arch Am Acad Optom 1956; 33: 314.
  • 125
    Sun F., Stark L., Nguyen A., Wong J., Lakschminarayanan V., Mueller E. Changes in accommodation with age: static and dynamic. Am J Optom Physiol Opt 1988; 65: 492498.
  • 126
    Said FS, Weale RA. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia 1959; 3: 213231.
  • 127
    Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol 1962; 1: 776783.
  • 128
    Mellerio J. Light absorption and scatter in the human lens. Vision Res 1971; 11: 129141.
  • 129
    Mellerio J. Yellowing of the human lens: Nuclear and cortical contributions. Vision Res 1987; 27: 15811587.
  • 130
    Pokorny J., Smith VC, Lutze M. Aging of the human lens. Applied Opt 1987; 26: 14371440.
  • 131
    Sample PA, Esterson FD, Weinreb RN, Boynton RM. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthalmol Vis Sci 1988; 29: 13061311.
  • 132
    Birren JE, Casperson RC, Botwinick J. Age changes in pupil size. J Gerontol 1950; 5: 216221.
  • 133
    Kumnick LS. Pupillary psychosensory restitution and aging. J Opt Soc Am 1954; 44: 735741.
  • 134
    Kadlecová V., Peleška M., Vaško A. Dependence on age of the diameter of the pupil in the dark. Nature 1958; 182: 15201521.
  • 135
    Leinhos R. Die Altersabhângigheit des Augenpupillendurchmessers. Optik 1959; 16.
  • 136
    Said FS, Sawires WS. Age dependence of changes in pupil diameter in the dark. Optica Acta (Lond) 1972; 19: 359361.
  • 137
    Winn B., Whitaker D., Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci 1994; 35: 11321137.
  • 138
    Ben-Sira I., Weinberger D., Bodenheimer J., Yassur Y. Clinical method for measurement of light backscattering from the in vivo human lens. Invest Ophthalmol Vis Sci 1980; 19: 435437.
  • 139
    IJspeert JK, De Waard PWT, van den Berg TJTP, De Jong PTVM. The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation. Vision Res 1990; 30: 699707.
  • 140
    Fujisawa K., Sasaki K. Changes in light scattering intensity of the transparent lenses of subjects selected from population-based surveys depending on age: analysis through Scheimpflug images. Ophthalmic Res 1995; 27: 89101.
  • 141
    Saunders H. Age-dependence of human refractive errors. Ophthalmic Physiol Opt 1981; 1: 159174.
  • 142
    Saunders H. A longitudinal study of the age-dependence of human ocular refraction. 1. Age-dependent changes in the equivalent sphere. Ophthalmic Physiol Opt 1986; 6: 3946.
  • 143
    Brown NAP, Hill AR. Cataract: the relation between myopia and cataract morphology. Br J Ophthalmol 1987; 71: 405414.
  • 144
    Artal P., Berrio E., Guirao A., Piers P. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A 2002; 19: 137143.
  • 145
    Calver RI, Cox MJ, Elliot DB. Effect of aging on the monochromatic aberrations of the human eye. J Opt Soc Am A 1999; 16: 20692078.
  • 146
    McLellan JS, Marcos S., Burns SA. Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 2001; 42: 13901395.
  • 147
    Kuroda T., Fujikado T., Maeda N., Oshika T., Hirohara Y., Mihashi T. Wavefront analysis in eyes with nuclear or cortical cataract. Am J Ophthalmol 2002; 134: 19.
  • 148
    Fujikado T., Kuroda T., Ninomiya S., Maeda N., Tano Y., Oshika T., Hirohara Y., Mihashi T. Age-related changes in ocular and corneal aberrations. Am J Ophthalmol 2004; 138: 143146.
  • 149
    Amano S., Amano Y., Yamagami S., Miyai T., Miyata K., Samejima T., Oshika T. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol 2004; 137: 988992.
  • 150
    Oshika T., Klyce SD, Applegate RA, Howland HC. Changes in corneal wave-front aberrations with aging. Invest Ophthalmol Vis Sci 1999; 40: 13511355.
  • 151
    Wang L., Dai E., Koch DD, Nathoo A. Optical aberrations of the human anterior cornea. J Cataract Refract Surg 2003; 29: 15141521.
  • 152
    Campbell FW. The depth of field of the human eye. Optica Acta (Lond) 1957; 4: 157164.
  • 153
    Jacobs RJ, Smith G., Chan CD. Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods. Optom Vis Sci 1989; 66: 545553.
  • 154
    Atchison DA, Charman WN, Woods RL. Subjective depth-of-focus of the eye. Optom Vis Sci 1997; 74: 511520.
  • 155
    Marcos S. Are changes in ocular aberrations with age a significant problem for refractive surgery? J Refract Surg 2002; 18: S572S578.
  • 156
    Thibos LN, Hong X. Clinical applications of the Shack-Hartmann aberrometer. Optom Vis Sci 1999; 76: 817825.
  • 157
    Barbero S., Marcos S., Merayo-Lloves J., Moreno-Barriuso E. Validation of the estimation of corneal aberrations from videokeratography in keratoconus. J Refract Surg 2002; 18: 263270.
  • 158
    Maeda M., Fujikado T., Kuroda M., Mihashi T., Hirohara Y., Nishida N., Watanabe A., Tano Y. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 2002; 109: 19962003.
  • 159
    Kuroda T., Fujikado T., Ninomiya S., Maeda N., Hirohara Y., Mihashi T. Effect of aging on ocular light scatter and higher order aberrations. J Refract Surg 2002; 18: S598S602.
  • 160
    Sachdev N., Ormonde SE, Sherwin T., McGhee CNJ. Higher-order aberrations of lenticular opacities. J Cataract Refract Surg 2004; 30: 16421648.
  • 161
    Montés-Micó R., Cáliz A., Alió JL. Wavefront analysis of higher order aberrations in dry eye patients. J Refract Surg 2004; 20: 243247.
  • 162
    Montes-Mico R., Caliz A., Alio JL. Changes in ocular aberrations after instillation of artificial tears in dry-eye patients. J Cataract Refract Surg 2004; 30: 16491652.
  • 163
    Seiler T., Kaemmerer M., Mierdel P., Krinke HE. Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 2000; 118: 1721.
  • 164
    Moreno-Barriuso E., Lloves JM, Marcos S., Navarro R., Llorente L., Barbero S. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 2001; 42: 13961403.
  • 165
    Marcos S., Barbero S., Llorente L., Merayo-Lloves J. Optical response to LASIK surgery for myopia from total and corneal aberration measurements. Invest Ophthalmol Vis Sci 2001; 42: 33493356.
  • 166
    Schwiegerling J., Snyder RW. Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy. J Cataract Refract Surg 2000; 26: 214221.
  • 167
    Martínez CE, Applegate RA, Klyce SD, McDonald MB, Medina JP, Howland HC. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 1998; 116: 10531062.
  • 168
    Holladay JT, Dudeja DR, Chang J. Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J Cataract Refract Surg 1999; 25: 663669.
  • 169
    Holladay JT, Janes JA. Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis. J Cataract Refract Surg 2002; 28: 942947.
  • 170
    Oshika T., Miyata K., Tokunaga T., Samejima T., Amano S., Tanaka S., Hirohara Y., Mihashi T., Maeda N., Fujikado T. Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis. Ophthalmology 2002; 109: 11541158.
  • 171
    Hersh PS, Fry K., Blaker JW. Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy: clinical results and theoretical models of etiology. J Cataract Refract Surg 2003; 29: 20962104.
  • 172
    Anera RG, Jiménez JR, Jiménez del Barco L., Bermúdez JEH. Changes in corneal asphericity after laser in situ keratomileusis. J Cataract Refract Surg 2003; 29: 762768.
  • 173
    Llorente L., Barbero S., Merayo J., Marcos S. Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Refract Surg 2004; 20: 203216.
  • 174
    Ma L., Atchison DA, Albietz JM, Lenton LM, McLennan SG. Wavefront aberrations following LASIK and lensectomy corrections for hypermetropia. J Refract Surg 2004; 20: 307316.
  • 175
    Oliver KM, O'Brart DP, Stephenson CG, Hemenger RP, Applegate RA, Tomlinson A., Marshall J. Anterior corneal optical aberrations induced by photorefractive keratectomy for hyperopia. J Refract Surg 2001; 17: 406413.
  • 176
    Chen CC, Izadshenas A., Rana MA, Azar DT. Corneal asphericity after hyperopic laser in situ keratomileusis. J Cataract Refract Surg 2002; 28: 15391545.
  • 177
    Wang L., Koch DD. Anterior corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Cataract Refract Surg 2003; 29: 17021708.
  • 178
    Mrochen M., Kaemmerer M., Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg 2001; 27: 201207.
  • 179
    Mrochen M., Krueger RR, Bueeler M., Seiler T. Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation. J Refract Surg 2002; 18: 418429.
  • 180
    Endl MJ, Martinez CE, Klyce SD, McDonald MB, Coorpender SJ, Applegate RA, Howland HC. Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 2001; 119: 11591164.
  • 181
    Naroo SA, Charman WN. Changes in posterior corneal curvature after photorefractive keratectomy. J Cataract Refract Surg 2000; 26: 872878.
  • 182
    Seitz B., Torres F., Langenbucher A., Behrens A., Suarez E. Posterior corneal curvature changes after myopic laser in situ keratomileusis. Ophthalmology 2001; 108: 666673.
  • 183
    Baek TM, Lee KH, Kagaya F., Tomidokoro A., Amano S., Oshika T. Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology 2001; 108: 317320.
  • 184
    Mrochen M., Seiler T. Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery. J Refract Surg 2001; 17: S584S587.
  • 185
    Jiménez JR, Anera RG, Jiménez del Barco L., Hita E. Effect on laser-ablation algorithms of reflection losses and non-normal incidence on the anterior cornea. Applied Physics Letters 2002; 81: 15211523.
  • 186
    Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 1988; 14: 4652.
  • 187
    Cano D., Barbero S., Marcos S. Comparison of real and computer-simulated outcomes of LASIK refractive surgery. J Opt Soc Am A 2004; 21: 926936.
  • 188
    Slade S. Contralateral comparison of Alcon CustomCornea and VISX CustomVue wavefront-guided Laser in situ keratomileusis: one month results. J Refract Surg 2004; 20: 86018605.
  • 189
    Mrochen M., Kaemmerer M., Seiler T. Wavefront-guided laser in situ keratomileusis: early results in three eyes. J Refract Surg 2000; 16: 116121.
  • 190
    MacRae SM, Schwiegerling J., Snyder R. Customized corneal ablation and supervision. J Refract Surg 2000; 16: S230S235.
  • 191
    MacRae SM, Slade S., Durrie DS, Cox I. Customized ablation using the Bausch & Lomb Zyoptix system. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 235241.
  • 192
    Panagopoulou SI, Pallikaris IG. Wavefront customized ablations with the WASCA Asclepion workstation. J Refract Surg 2001; 17: S608S612.
  • 193
    Nagy ZZ, Palagyi-Deak I., Kelemen E., Kovacs A. Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism. J Refract Surg 2002; 18: S615S619.
  • 194
    Nagy ZZ, Palagyi-Deak I., Kovacs A., Kelemen E., Forster W. First results with wavefront-guided photorefractive keratectomy for hyperopia. J Refract Surg 2002; 18: S620S623.
  • 195
    Vongthongsri A., Phusitphoykai N., Naripthapan P. Comparison of wavefront-guided customized ablation vs. conventional ablation in laser in situ keratomileusis. J Refract Surg 2002; 18: S332S335.
  • 196
    Lawless MA, Hodge C., Rogers CM GL. S. Laser in situ keratomileusis with Alcon CustomCornea. J Refract Surg 2003; 19: S691S696.
  • 197
    Durrie DS. First 100 CustomCornea commercial eyes. J Refract Surg 2003; 19: S687S690.
  • 198
    Durrie DS, Stahl J. Randomized comparison of custom Laser in situ Keratomileusis with the Alcon CustomCornea and the Bausch & Lomb Zyoptix systems: one-month results. J Refract Surg 2004; 20: S614S618.
  • 199
    Liang J., Koch DD. Customized ablation using the VISX Wavescan system and the VISX S4 ActiveTrak excimer laser. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 227233.
  • 200
    Maus M., Cummings A., Tuess S. The Allegretto Wave: a different approach to wavefront-guided ablation. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 259263.
  • 201
    Pettit GH, Campin JA, MacDonald MB, Krueger RR. Customized ablation using the Alcon CustomCornea platform. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 217225.
  • 202
    Reinstein DZ, Neal DR, Vogelsang H., Schroeder E., Nagy ZZ, Bergt M., Copland J., Topa D. Customized corneal ablation using the Carl Zeiss Meditec platform. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 243257.
  • 203
    Awwad ST, El-Kateb M., Bowman RW, Cavanagh HD, McCulley JP. Wavefront-guided Laser in situ Keratomileusis with the Alcon CustomCornea and the VISX CustomVue: three-month results. J Refract Surg 2004; 20: 86068613.
  • 204
    Carones F., Vigo L., Scandola E., Sorace SG. Expanded range CustomCornea algorithms for myopia and astigmatism; one-month results. J Refract Surg 2004; 20: S619S623.
  • 205
    Smith G., Lu C-W. The spherical aberration of intra-ocular lenses. Ophthalmic Physiol Opt 1988; 8: 287294.
  • 206
    Atchison DA. Optical design of poly (methyl methacrylate) intraocular lenses. J Cat Refract Surg 1990; 16: 178187.
  • 207
    Barbero S., Marcos S., Jiménez-Alfaro I. Optical aberrations of intraocular lenses measured in vivo and in vitro. J Opt Soc Am A 2003; 20: 18411851.
  • 208
    Vilarrodona L., Barrett GD, Johnson B. High-order aberrations in pseudophakia with different intraocular lenses. J Cataract Refract Surg 2004; 30: 571575.
  • 209
    Taketani F., Matsuura T., Yukawa E., Hara Y. High-order aberrations with Hydroview H60M and AcrySof MA30BA intraocular lenses: comparative study. J Cataract Refract Surg 2004; 30: 844848.
  • 210
    Atchison DA. Design of aspheric intraocular lenses. Ophthalmic Physiol Opt 1991; 11: 137146.
  • 211
    Lu C., Smith G. The aspherizing of intraocular lenses. Ophthalmic Physiol Opt 1990; 10: 5466.
  • 212
    Holladay JT, Piers PA, Koranyi G., van der Mooren M., Norrby NES. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 2002; 18: 683691.
  • 213
    Mester U., Dillinger P., Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg 2003; 29: 652660.
  • 214
    Packer M., Fine IH, Hoffman RS, Piers PA. Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg 2002; 18: 692696.
  • 215
    Sandstedt CA, Chang S., Schwartz DM. The Calhoun light adjustable lens: a postinsertion method for the correction of refractive errors. In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 291297.
  • 216
    Collins MJ, Brown B., Atchison DA, Newman SD. Tolerance to spherical aberration induced by rigid contact lenses. Ophthalmic Physiol Opt 1992; 12: 2428.
  • 217
    Oxenberg LD, Carney LG. Visual performance with aspheric rigid contact lenses. Optom Vis Sci 1989; 66: 818821.
  • 218
    Atchison DA. Aberrations associated with rigid contact lenses. J Opt Soc Am A 1995; 12: 22672273.
  • 219
    Hong X., Himebaugh N., Thibos LN. On-eye evaluation of optical performance of rigid and soft contact lenses. Optom Vis Sci 2001; 78: 872880.
  • 220
    Dorronsoro C., Barbero S., Llorente L., Marcos S. On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry. Optom Vis Sci 2003; 80: 115125.
  • 221
    Dietze HH, Cox MJ. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power. Optom Vis Sci 2003; 80: 126134.
  • 222
    Lu F., Mao X., Qu J., Xu D., He JC. Monochromatic wavefront aberrations in the human eye with contact lenses. Optom Vis Sci 2003; 80: 135141.
  • 223
    Dietze HH, Cox MJ. Correcting ocular spherical aberration with soft contact lenses. J Opt Soc Am A 2004; 21: 473485.
  • 224
    Lopez-Gil N., Castejon-Mochon JF, Benito A., Marin JM, Lo-a-Foe G., Marin G., Fermigier B., Renard D., Joyeux D., Chateau N., Artal P. Aberration generation by contact lenses with aspheric and asymmetric surfaces. J Refract Surg 2002; 18: S603S609.
  • 225
    Guirao A., Williams DR, Cox IG. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations. J Opt Soc Am A 2001; 18: 10031015.
  • 226
    Mountford J., Ruston D., Dave T. Orthokeratology. Principles and Practice. Oxford: Butterworth-Heinemann; 2004.
  • 227
    Joslin CE, Wu SM, McMahon TT, Shahidi M. Higher-order wavefront aberrations in corneal refractive therapy. Optom Vis Sci 2003; 80: 805811.
  • 228
    Jalie M. The Principles of Ophthalmic Lenses, 4th ed. London: Association of Dispensing Opticians; 1984.
  • 229
    Atchison DA. Spectacle lens design- development and present state. Aust J Optom 1984; 67: 97107.
  • 230
    Atchison DA. Spectacle lens design: a review. Applied Opt 1992; 31: 35793585.
  • 231
    Villegas EA, Artal P. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions. Optom Vis Sci 2003; 80: 106114.
  • 232
    Cheng X., Himebaugh NL, Kollbaum PS, Thibos LN, Bradley A. Test-retest reliability of clinical Shack-Hartmann measurements. Invest Ophthalmol Vis Sci 2004; 45: 351360.
  • 233
    Albarrán C., Pons AM, Lorente A., Montés R., Artigas JM. Influence of the tear film on optical quality of the eye. Contact Lens Ant Eye 1997; 20: 129135.
  • 234
    Tutt R., Bradley A., Begley C., Thibos LN. Optical and visual impact of tear break-up in human eyes. Invest Ophthalmol Vis Sci 2000; 41: 41174123.
  • 235
    Kiely PM, Carney LG, Smith G. Diurnal variations of corneal topography and thickness. Am J Optom Physiol Opt 1982; 59: 976982.
  • 236
    Harper CL, Boulton ME, Bennett D., Marcyniuk B., Jarvis-Evans JH, Tullo AB, Ridgway AE. Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80: 10681072.
  • 237
    Lattimore MR Jr, Kaupp S., Schallhorn S., Lewis R. 4th. Orbscan pachymetry: implications of a repeated measures and diurnal variation analysis. Ophthalmology 1999; 106: 977981.
  • 238
    Handa T., Mukuno K., Niida T., Uozato H., Tanaka S., Shimizu K. Diurnal variation of human corneal curvature in young adults. J Refract Surg 2002; 18: 5862.
  • 239
    Stone R., Quinn GE, Francis EL, Ying G-S, Flitcroft DI, Parekh P., Brown J., Orlow J., Schmid G. Diurnal axial length fluctuations in human eyes. Invest Ophthalmol Vis Sci 2004; 45: 6370.
  • 240
    Mierdel P., Krinke HE, Pollack K., Spoerl E. Diurnal fluctuation of higher order ocular aberrations: correlation with intraocular pressure and corneal thickness. J Refract Surg 2004; 20: 236242.
  • 241
    Koh S., Maeda N., Kuroda T., Hori Y., Watanabe H., Fujikado T., Tano Y., Hirohara Y., Mihashi T. Effect of tear film break-up on higher-order aberrations measured with wavefront sensor. Am J Ophthalmol 2002; 134: 115117.
  • 242
    Montés-Micó R., Alió JL, Muňoz G., Peréz-Santonja JJ, Charman WN. Postblink changes in total and corneal ocular aberrations. Ophthalmology 2004; 111: 758767.
  • 243
    Fankhauser F., Enoch JM. The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour. Arch Ophthalmol 1962; 68: 210251.
  • 244
    Johnson CA, Leibowitz HW. Practice, refractive error and feedback as factors influencing peripheral motion thresholds. Percept Psychophys 1974; 15: 276280.
  • 245
    Atchison DA. Effect of defocus on visual field measurement. Ophthalmic Physiol Opt 1987; 7: 259265.
  • 246
    Wang Y-Z, Thibos LN, Lopez N., Salmon T., Bradley A. Subjective refraction of the peripheral field using contrast detection acuity. J Am Optom Assoc 1996; 67: 584589.
  • 247
    Rempt F., Hoogerheide J., Hoogenboom WPH. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971; 162: 110.
  • 248
    Millodot M., Lament A. Refraction of the periphery of the eye. J Opt Soc Am 1974; 64: 110111.
  • 249
    Anderson RS, Thibos LN. Relationship between acuity for gratings and for Tumbling-E letters in peripheral vision. J Opt Soc Am A 1999; 16: 23212333.
  • 250
    Jackson DW, Paysse EA, Wilhelmus KR, Hussein MA, Rosby G., Coats DK. The effect of off-the-visual-axis retinoscopy on objective refractive measurement. Am J Ophthalmol 2004; 137: 11011104.
  • 251
    Ferree CE, Rand G., Hardy C. Refraction for the peripheral field of vision. Arch Ophthalmol 1931; 5: 717731.
  • 252
    Ferree CE, Rand G., Hardy C. Refractive asymmetry in the temporal and nasal halves of the visual field. Am J Ophthalmol 1932; 15: 513522.
  • 253
    Ferree CE, Rand G. Interpretation of refractive conditions in the peripheral field of vision. Arch Ophthalmol 1933; 9: 925938.
  • 254
    Millodot M. Effect of ametropia on peripheral refraction. Am J Optom Physiol Opt 1981; 58: 691695.
  • 255
    Millodot M. Peripheral refraction in aphakic eyes. Am J Optom Physiol Opt 1984; 61: 586589.
  • 256
    Smith G., Millodot M., McBrien N. The effect of accommodation on oblique astigmatism and field curvature of the human eye. Clin Exp Optom 1988; 71: 119125.
  • 257
    Dunne MCM, Misson GP, White EK, Barnes DA. Peripheral astigmatic symmetry and angle alpha. Ophthalmic Physiol Opt 1993; 13: 303305.
  • 258
    Love J., Gilmartin B., Dunne MCM. Relative peripheral refractive error in adult myopia and emmetropia. Invest Ophthalmol Vis Sci 2000; 41: S302.
  • 259
    Mutti DO, Sholtz RI, Friedman NE, Zadnik K. Peripheral refraction and ocular shape in children. Invest Ophthalmol Vis Sci 2000; 41: 10221030.
  • 260
    Atchison DA. Comparison of peripheral refractions determined by different instruments. Optom Vis Sci 2003; 80: 655660.
  • 261
    Jenkins TCA. Aberrations of the eye and their effects on vision: Part 2. Br J Physiol Opt 1963; 20: 161201.
  • 262
    Jennings JAM, Charman WN. Off-axis image quality in the human eye. Vision Res 1981; 21: 445455.
  • 263
    Jennings JAM, Charman WN. Optical image quality in the peripheral retina. Am J Optom Physiol Opt 1978; 55: 582590.
  • 264
    Artal P., Derrington AM, Colombo E. Refraction, aliasing, and the absence of motion reversals in peripheral vision. Vision Res 1995; 35: 939947.
  • 265
    Williams DR, Artal P., Navarro R., McMahon MJ, Brainard DH. Off-axis optical quality and retinal sampling in the human eye. Vision Res 1996; 36: 11031114.
  • 266
    Navarro R., Moreno E., Dorronsoro C. Monochromatic aberrations and point-spread functions of the human eye across the visual field. J Opt Soc Am A 1998; 15: 25222529.
  • 267
    Guirao A., Artal P. Off-axis monochromatic aberrations estimated from double pass measurements in the human eye. Vision Res 1999; 39: 207217.
  • 268
    Gustafsson J., Terenius E., Buchheister J., Unsbo P. Peripheral astigmatism in emmetropic eyes. Ophthalmic Physiol Opt 2001; 21: 393400.
  • 269
    Seidemann A., Schaeffel F., Guirao A., Lopez-Gil N., Artal P. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J Opt Soc Am A 2002; 19: 23632373.
  • 270
    Atchison DA, Scott DH. Monochromatic aberrations of human eyes in the horizontal visual field. J Opt Soc Am A 2002; 19: 21802184.
  • 271
    Charman WN, Jennings JAM. Ametropia and peripheral refraction. Am J Optom Physiol Opt 1982; 59: 922923.
  • 272
    Ma L., Atchison DA, Charman WN. Off-axis aberrations following corneal refractive surgery. J Cataract Refract Surg. In press.
  • 273
    Atchison DA, Pritchard N., White SD, Griffiths AM. Influence of age on peripheral refraction. Vision Res: In press.
  • 274
    Dunne MCM, Barnes DA, Clement RA. A model for retinal shape changes in ametropia. Ophthalmic Physiol Opt 1987; 7: 159160.
  • 275
    Hoogerheide J., Rempt F., Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica 1971; 163: 209215.
  • 276
    Atchison DA. Anterior corneal and internal contributions to peripheral aberrations of human eyes. J Opt Soc Am A 2004; 21: 355359.
  • 277
    Ames A., Proctor CA. Dioptrics of the eye. J Opt Soc Am 1921; 5: 2284.
  • 278
    Donders FC. Die Grenzen des Gesichtfeldes in Beziehung zu denen der Netzhaut. V. Graefe's Archiv Ophthalmol 1877; 23: 255280.
  • 279
    Druault A. Note sur la situation des image retiénnes formées par les rayons très obliques sur l'axe optique (1). Arch D'Ophtalmol 1898; 18: 685692.
  • 280
    Applegate RA, Marsack JD, Ramos R., Sarver EJ. Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 2003; 29: 14871495.
  • 281
    Applegate RA, Ballentine CS, Gross A., Sarver EJ, Sarver C. Visual acuity as a function of Zernike mode and level of root mean square error. Optom Vis Sci 2003; 80: 97105.
  • 282
    Applegate RA. Glenn Fry Award Lecture 2002: Wavefront sensing, ideal corrections and visual performance. Optom Vis Sci 2004; 81: 167177.
  • 283
    Paterson C., Munro I., Dainty JC. A low cost adaptive optics system using a membrane mirror. Optics Express 2000; 6: 175185.
  • 284
    Fernández EJ, Iglesias I., Artal P. Closed-loop adaptive optics in the human eye. Optics Letters 2001; 26: 746748.
  • 285
    Fernández EJ, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics. Optics Express 2003; 11: 10561069.
  • 286
    Artal P., Chen L., Fernandez EJ, Singer B., Manzanera S., Williams DR. Neural compensation for the eye's optical aberrations. J Vis 2004; 4: 281287.
  • 287
    Artal P. Personal communication. 2004.
  • 288
    Roberts C. The cornea is not a piece of plastic. J Refract Surg 2000; 16: 407413.
  • 289
    Roberts C., Dupps WJ. Corneal biomechanics and their role in corneal ablative procedures. In: MacRaeSM, KruegerRR, ApplegateRA, eds. Customized Corneal Ablation: The Quest for Super Vision. Thorofare: Slack Incorporated; 2001. p 109131.
  • 290
    Lipshitz I. Thirty-four challenges to meet before excimer laser technology can achieve super vision. J Refract Surg 2002; 18: 740743.
  • 291
    Campbell FW, Green DG. Optical and retinal factors affecting visual resolution. J Physiol (Lond) 1965; 181: 576593.
  • 292
    Campbell FW, Gubisch RW. Optical quality of the human eye. J Physiol (Lond) 1966; 186: 558578.
  • 293
    Walsh G. The effect of mydriasis on the pupillary centration of the human eye. Ophthalmic Physiol Opt 1988; 8: 178182.
  • 294
    Wilson MA, Campbell MC, Simonet P. Change of pupil centration with change of illumination and pupil size. Optom Vis Sci 1992; 69: 129136.
  • 295
    Donnenfeld E. The pupil is a moving target: centration, repeatability, and registration. J Refract Surg 2004; 20: S593S596.
  • 296
    Thibos LN, Bradley A., Zhang X. Effect of ocular chromatic aberration on monocular visual performance. Optom Vis Sci 1991; 68: 599607.
  • 297
    Williams DR, Porter J., Yoon G., Guirao A., Hofer H., Chen L., Cox I., MacRae SM. How far can we extend the limits of human vision? In: KruegerRR, ApplegateRA, MacRaeSM, eds. Wavefront Customized Visual Correction: The Quest for Super Vision II. Thorofare: Slack Incorporated; 2004. p 1938.
  • 298
    Williams DR. Visibility of interference fringes near the resolution limit. J Opt Soc Am A 1985; 2: 10871093.
  • 299
    Thibos LN, Cheney FE, Walsh DJ. Retinal limits to the detection and resolution of gratings. J Opt Soc Am A 1987; 4: 15241529.
  • 300
    Williams DR, Coletta NJ. Cone spacing and the visual resolution limit. J Opt Soc Am A 1987; 4: 15141523.
  • 301
    Sekiguchi N., Williams DR, Brainard DH. Efficiency in detection of isoluminant and isochromatic interference fringes. J Opt Soc Am A 1993; 10: 21182133.
  • 302
    Elliott DB, Yang KG, Whitaker D. Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6. Optom Vis Sci 1995; 72: 186191.
  • 303
    Charman WN, Chateau N. The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physiol Opt 2003; 23: 479493.
  • 304
    Yoon G-Y, Williams DR. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A 2002; 19: 266275.
  • 305
    Williams D., Yoon GY, Porter J., Guirao A., Hofer H., Cox I. Visual benefit of correcting higher order aberrations of the eye. J Refract Surg 2000; 16: S554S559.