• 1
    Taylor HR, Keeffe JE, Vu HT, Wang JJ, Rochtchina E, Pezzullo ML, Mitchell P. Vision loss in Australia. Med J Aust 2005; 182: 565568.
  • 2
    Pagon RA. Retinitis pigmentosa. Surv Ophthalmol 1988; 33: 137177.
  • 3
    Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 22312239.
  • 4
    Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 1511215117.
  • 5
    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 22402248.
  • 6
    Boughman JA, Conneally PM, Nance WE. Population genetic studies of retinitis pigmentosa. Am J Hum Genet 1980; 32: 223235.
  • 7
    Rattner A, Nathans J. Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 2006; 7: 860872.
  • 8
    Evans JR. Risk factors for age-related macular degeneration. Prog Retin Eye Res 2001; 20: 227253.
  • 9
    Baird PN, Hageman GS, Guymer RH. New era for personalized medicine: the diagnosis and management of age-related macular degeneration. Clin Experiment Ophthalmol 2009; 37: 814821.
  • 10
    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005; 308 (5720): 419421.
  • 11
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308 (5720): 385389.
  • 12
    Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 2001; 20: 705732.
  • 13
    Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 2011; 56: 95113.
  • 14
    Damiani D, Novelli E, Mazzoni F, Strettoi E. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: A paradigm of early onset photoreceptor degeneration. J Comp Neurol 2012; 520: 14061423.
  • 15
    Mazzoni F, Novelli E, Strettoi E. Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 2008; 28: 1428214292.
  • 16
    Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968; 196: 479493.
  • 17
    Brindley GS. A new interaction of light and electricity in stimulating the human retina. J Physiol 1964; 171: 514520.
  • 18
    Potts AM, Inoue J, Buffum D. The electrically evoked response of the visual system (EER). Invest Ophthalmol 1968; 7: 269278.
  • 19
    Humayun MS, de Juan E Jr, Dagnelie G, Greenberg RJ, Prost RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996; 114: 4046.
  • 20
    Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, da Cruz L, Stanga P et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 2011; 95: 539543.
  • 21
    Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004; 122: 460469.
  • 22
    de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, Mahadevappa M et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 2008; 49: 23032314.
  • 23
    Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Procs Biol Sci 2011; 278 (1711): 14891497.
  • 24
    Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011; 52: 47264733.
  • 25
    Klauke S, Goertz M, Rein S, Hoehl D, Thomas U, Eckhorn R, Bremmer F et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest Ophthalmol Vis Sci 2011; 52: 449455.
  • 26
    Chow AY, Bittner AK, Pardue MT. The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis). Trans Am Ophthalmol Soc 2010; 108: 120154.
  • 27
    Pardue MT, Phillips MJ, Yin H, Fernandes A, Cheng Y, Chow AY, Ball SL. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2005; 2: S39S47.
  • 28
    Pardue MT, Phillips MJ, Yin H, Sippy BD, Webb-Wood S, Chow AY, Ball SL. Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 2005; 46: 674682.
  • 29
    Wilke R, Gabel VP, Sachs H, Bartz Schmidt KU, Gekeler F, Besch D, Szurman P et al. Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Invest Ophthalmol Vis Sci 2011; 52: 59956003.
  • 30
    Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Cideciyan AV et al. Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology 2012; 119: 779788.
  • 31
    Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003; 43: 25732581.
  • 32
    Greenwald SH, Horsager A, Humayun MS, Greenberg RJ, McMahon MJ, Fine I. Brightness as a Function of Current Amplitude in Human Retinal Electrical Stimulation. Invest Ophthalmol Vis Sci 2009; 50: 50175025.
  • 33
    Perez Fornos A, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S, Hafezi F, Pelizzone M. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci 2012; 53: 27202731.
  • 34
    Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, Anderson DH et al. Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci 2003; 44: 44814488.
  • 35
    Medeiros NE, Curcio CA. Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001; 42: 795803.
  • 36
    Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997; 115: 511515.
  • 37
    Stone JL, Barlow WE, Humayun MS, Dejuan E, Milam AH. Morphometric analysis of macular photoreceptors and ganglion-cells in retinas with retinitis-pigmentosa. Arch Ophthalmol 1992; 110: 16341639.
  • 38
    Sekirnjak C, Hulse C, Jepson LH, Hottowy P, Sher A, Dabrowski W, Litke AM et al. Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration. J Neurophysiol 2009; 102: 32603269.
  • 39
    Margolis DJ, Newkirk G, Euler T, Detwiler PB. Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci 2008; 28: 65266536.
  • 40
    Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, Levine EM, Milam AH et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 2003; 464: 116.
  • 41
    Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, Wensel T et al. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 2007; 48: 33643371.
  • 42
    Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607655.
  • 43
    Wilke RG, Moghadam GK, Lovell NH, Suaning GJ, Dokos S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng 2011; 8: 046016.
  • 44
    Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979790.
  • 45
    Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2010; 29: 398427.
  • 46
    Aguirre GK, Komaromy AM, Cideciyan AV, Brainard DH, Aleman TS, Roman AJ, Avants BB et al. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation. PLoS Med 2007; 4: e230.
  • 47
    Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 924.
  • 48
    Berson EL, Gouras P, Gunkel RD. Rod responses in retinitis pigmentosa dominantly inherited. Arch Ophthalmol 1968; 80: 5867.
  • 49
    Humayun MS, de Juan E Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S. Pattern electrical stimulation of the human retina. Vision Res 1999; 39: 25692576.
  • 50
    Kolb H, Gouras P. Electron-microscopic observations of human retinitis pigmentosa, dominatly inherited. Invest Ophthalmol 1974; 13: 487498.
  • 51
    Verhoeff FH. Microscopic observations in a case of retinitis pigtmentosa. Arch Ophthalmol 1931; 5: 392407.
  • 52
    Wassle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev 1991; 71: 447480.
  • 53
    Aleman TS, Cideciyan AV, Sumaroka A, Windsor EA, Herrera W, White DA, Kaushal S et al. Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. Invest Ophthalmol Vis Sci 2008; 49: 15801590.
  • 54
    Kusnyerik A, Greppmaier U, Wilke R, Gekeler F, Wilhelm B, Sachs HG, Bartz-Schmidt KU et al. Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 2012. [Epub ahead of print].
  • 55
    Abramian M, Lovell NH, Morley JW, Suaning GJ, Dokos S. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes. J Neural Eng 2011; 8: 035004.
  • 56
    Weiland JD, Humayun MS, Dagnelie G, de Juan E, Greenberg RJ, Iliff NT. Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 1999; 237: 10071013.
  • 57
    Rattay F, Resatz S. Effective electrode configuration for selective stimulation with inner eye prostheses. IEEE Trans Biomed Eng 2004; 51: 16591664.
  • 58
    Gekeler F, Szurman P, Grisanti S, Weiler U, Claus R, Greiner TO, Volker M et al. Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 2007; 245: 230241.
  • 59
    O'Hearn TM, Sadda SR, Weiland JD, Maia M, Margalit E, Humayun MS. Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina. Vision Res 2006; 46: 31983204.
  • 60
    Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ et al. Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 2010; 7: 036008.
  • 61
    Zhou JA, Woo SJ, Park SI, Kim ET, Seo JM, Chung H, Kim SJ. A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits. J Biomed Biotechnol 2008; 2008: 547428.
  • 62
    Villalobos J, Allen PJ, McCombe MF, Ulaganathan M, Zamir E, Ng DC, Shepherd RK et al. Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma. Graefes Arch Clin Exp Ophthalmol 2012; 250: 399407.
  • 63
    Yamauchi Y, Franco LM, Jackson DJ, Naber JF, Ziv RO, Rizzo JF, Kaplan HJ et al. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. J Neural Eng 2005; 2: S48S56.
  • 64
    Siu T, Morley J. Implantation of episcleral electrodes via anterior orbitotomy for stimulation of the retina with induced photoreceptor degeneration: an in vivo feasibility study on a conceptual visual prosthesis. Acta Neurochir (Wein) 2008; 150: 477485.
  • 65
    Chowdhury V, Morley JW, Coroneo MT. Development of an extraocular retinal prosthesis: Evaluation of stimulation parameters in the cat. J Clin Neurosci 2008; 15: 900906.
  • 66
    DeMarco PJ, Yarbrough GL, Yee CW, McLean GY, Sagdullaev BT, Ball SL, McCall MA. Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis Sci 2007; 48: 916926.
  • 67
    Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278 (1711): 14891497.
  • 68
    Jensen RJ, Rizzo JF. Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng 2007; 4: S1S6.
  • 69
    Horsager A, Greenberg RJ, Fine I. Spatiotemporal interactions in retinal prosthesis subjects. Invest Ophthalmol Vis Sci 2010; 51: 12231233.
  • 70
    Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am A 1992; 9: 673677.
  • 71
    Cha KH, Horch K, Normann RA. Simulation of a phosphene-based visual-field—visual-acuity in a pixelized vision system. Ann Biomed Eng 1992; 20: 439449.
  • 72
    Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res 1992; 32: 13671372.
  • 73
    Fornos AP, Sommerhalder J, Pelizzone M. Reading with a simulated 60-channel implant. Front Neurosci 2011; 5: 57.
  • 74
    Palanker DV, Vankov A, Huie P, Asher A, Baccus SA, Marmor MF, Blumenkranz MS. Design of a high-resolution optoelectronic retinal prosthesis. Invest Ophthalmol Vis Sci 2005; 46: E-abstract 5278.
  • 75
    Jensen RJ, Ziv OR, Rizzo JF. Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. Invest Ophthalmol Vis Sci 2005; 46: 14861496.
  • 76
    Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol 2006; 95: 33113327.
  • 77
    Weiland JD, Liu WT, Humayun MS. Retinal prosthesis. Ann Rev Biomed Eng 2005; 7: 361401.
  • 78
    Zrenner E. Will retinal implants restore vision? Science 2002; 295 (5557): 10221025.
  • 79
    Miller CA, Abbas PJ, Nourski KV, Hu N, Robinson BK. Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hear Res 2003; 175: 200214.
  • 80
    Snyder RL, Middlebrooks JC, Bonham BH. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hear Res 2008; 235: 2338.
  • 81
    Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, Shepherd RK et al. Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 2012; 9: 036009.
  • 82
    Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 2003; 44: 53625369.
  • 83
    Suzuki S, Humayun MS, Weiland JD, Chen SJ, Margalit E, Piyathaisere DV, de Juan E Jr. Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina. Jap J Ophthalmol 2004; 48: 345349.
  • 84
    Sekirnjak C, Jepson LH, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. Changes in physiological properties of rat ganglion cells during retinal degeneration. J Neurophysioly 2011; 105: 25602571.
  • 85
    Ye JH, Goo YS. Comparison of voltage parameters for the stimulation of normal and degenerate retina. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 57835786.
  • 86
    Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci 2008; 28: 44464456.
  • 87
    Djilas M, Oles C, Lorach H, Bendali A, Degardin J, Dubus E, Lissorgues-Bazin G et al. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng 2011; 8: 046020.
  • 88
    Ganesan K, Stacey A, Meffin H, Lichter S, Greferath U, Fletcher EL, Prawer S et al. Diamond penetrating electrode array for epi-retinal prosthesis. Conf Proc IEEE Eng Medi Biol Soc 2010; 2010: 67576760.
  • 89
    Kim ET, Seo JM, Woo SJ, Zhou JA, Chung H, Kim SJ. Fabrication of pillar shaped electrode arrays for artificial retinal implants. Sensors 2008; 8: 58455856.
  • 90
    Koo KI, Chung H, Yu Y, Seo J, Park J, Lim JM, Paik SJ et al. Fabrication of pyramid shaped three-dimensional 8 x 8 electrodes for artificial retina. Sensors Actuators a-Phys 2006; 130: 609615.
  • 91
    Eng JG, Agrawal RN, Tozer KR, Ross-Cisneros FN, Dagnelie G, Greenberg RJ, Chader GJ et al. Morphometric analysis of optic nerves and retina from an end-stage retinitis pigmentosa patient with an implanted active epiretinal array. Invest Ophthalmol Vis Sci 2011; 52: 46104616.
  • 92
    Colodetti L, Weiland JD, Colodetti S, Ray A, Seiler MJ, Hinton DR, Humayun MS. Pathology of damaging electrical stimulation in the retina. Exp Eye Res 2007; 85: 2333.
  • 93
    Ray A, Colodetti L, Weiland JD, Hinton DR, Humayun MS, Lee EJ. Immunocytochemical analysis of retinal neurons under electrical stimulation. Brain Res 2009; 1255: 8997.
  • 94
    Ray A, Lee EJ, Humayun MS, Weiland JD. Continuous electrical stimulation decreases retinal excitability but does not alter retinal morphology. J Neural Eng 2011; 8: 045003.
  • 95
    Keseru M, Feucht M, Bornfeld N, Laube T, Walter P, Rossler G, Velikay-Parel M et al. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 2012; 90: e18.