• 1
    Flewelling LJ, Naar JR, Abbot JP, Baden DG, Barros NB, Bossart GD, Bottein M-YD, Hammond DG, Haubold EM, Heil CA, Henry MS, Jacocks HM, Leighfield TA, Pierce RH, Pitchford TD, Rommel SA, Scott PS, Steidinger KA, Truby EW, Van Dolah FM, Landsberg JH. Red tides and marine mammal mortalities. Nature 2005; 435: 755756.
  • 2
    Paperzak L. Future increase in harmful algal blooms in the North Sea due to climate change. Water Sci. Technol. 2005; 51: 3136.
  • 3
    Sengco MR, Li A, Tugend K, Kulis D, Anderson DM. Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Mar. Ecol. Prog. Ser. 2001; 210: 4153.
  • 4
    Na GH, Choi WJ, Chun YY. A study on red tide control with clay suspension. J. Aquaculture 1996; 9: 239245.
  • 5
    Choi HG, Kim PJ, Lee WC, Yun SJ, Kim HG, Lee HJ. Removal efficiency of Cochlodinium polykrikoides by yellow loess. J. Kor. Fish. Soc. 1998; 31: 109113.
  • 6
    Kim SJ. Removal of red tide organisms: 2. Flocculation of red tide organisms by using loess. J. Kor. Fish. Soc. 2000; 33: 455462.
  • 7
    Shirota A. Meeting on control of red tide with clay. Seikai Reg. Fish. Res. Lab. 1976; 24: 25.
  • 8
    Shirota A. Red tide problem and countermeasures (2). Int. J. Aquat. Fish. Technol. 1989; 1: 195223.
  • 9
    Yu Z, Sengco MR, Anderson DM. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J. Appl. Phycol. 2004; 16: 101110.
  • 10
    Sengco MR, Anderson DM. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 2004; 51: 169172.
  • 11
    Matozzo V, Deppieri M, Moschino V, Marin MG. Evaluation of 4-nonlyphenol toxicity in the clam Tapes philippinarum. Environ. Res. 2003; 91: 179183.
  • 12
    Bae HM, Choi HG, Lee WC, Yoon SJ. Control of the red tide by yellow clay dispersion. In: KimHG LeeSG LeeCK (eds). Harmful Algal Blooms in Korea and China, Proceedings of Korea–China Joint Symposium on Harmful Algal Blooms. Gooduck Press, Pusan, Korea. 1998; 5360.
  • 13
    Archambault M-C, Bricelj VM, Grant J, Anderson DM. Effects of clay, used to control harmful algal blooms, on juvenile Mercenaria mercenaria. J. Shellfish Res. 2002; 21: 395396.
  • 14
    Chong K, Wang WX. Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ. Pollut. 2001; 115: 107121.
  • 15
    Li AM, Yu PK, Hsieh D, Wang WX, Wu RS, Lam PK. Uptake and depuration of paralytic shellfish toxins in the green-lipped mussel, Perna viridis: a dynamic model. Environ. Toxicol. Chem. 2005; 24: 129135.
  • 16
    Wang WX. Comparison of metal uptake rate and absorption efficiency in marine animals. Environ. Toxicol. Chem. 2001; 20: 13671373.
  • 17
    Robinson WE, Wehling WE, Morse MP. The effect of suspended clay on feeding and digestive efficiency of the surf clam, Spisula solidissima (Dillwyn). J. Exp. Mar. Biol. Ecol. 1984; 74: 112.
  • 18
    Urban ER, Kirchman DL. Effect of kaolinite clay on feeding activity of the eastern oyster Crassostrea virginica (Gmelin). J. Exp. Mar. Biol. Ecol. 1992; 160: 4760.
  • 19
    Shumway SE, Frank DM, Ewart LM, Ward JE. Effect of yellow clay on clearance rate in seven species of benthic, filter-feeding invertebrates. Aqua. Res. 2003; 34: 13911402.
  • 20
    Cranford PJ. Relationships between food quantity and quality and absorption efficiency in sea scallops Placopecten magellanicus (Gmelin). J. Exp. Mar. Biol. Ecol. 1995; 189: 123142.
  • 21
    Sokal R, Rohlf J. Biometry, 3rd edn. Freeman, New York, NY. 1995.
  • 22
    Dionisio Pires LM, Van Donk E. Comparing grazing by Dreissena polymorpha on phytoplankton in the presence of toxic and non-toxic cyanobacteria. Freshwater Biol. 2002; 47: 18551865.
  • 23
    Young EB, Beardall J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J. Phycol. 2003; 39: 897905.
  • 24
    Wilhelm C, Becker A, Toepel J, Vieler A, Rautenberger R. Photophysiology and primary production of phytoplankton in freshwater. Physiol. Plantarum 2004; 120: 347357.
  • 25
    Coughlan J. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 1969; 2: 356358.
  • 26
    Cranford PJ, Gordon DC. The influence of dilute clay suspensions on sea scallop (Placopecten magellanicus) feeding activity and tissue growth. Neth. J. Sea Res. 1992; 30: 107120.
  • 27
    Ward JE, Levinton JS, Shumway SE, Cucci T. Site of particle selection in a bivalve mollusk. Nature 1997; 390: 131132.
  • 28
    Ward JE, Levinton JS, Shumway SE, Cucci T. Particle sorting in animals: in vivo determination of the pallial organs of selection. Mar. Biol. 1998; 131: 283292.
  • 29
    Van Den Thillart G, Van Lieshout G, Storey K, Cortesi P, De Zwaan A. Influence of long-term hypoxia on the energy metabolism of the haemoglobin-containing bivalve Scapharca inaequivalvis; critical O2 levels for metabolic depression. J. Comp. Physiol. (B), 1992; 162: 297384.
  • 30
    De Zwaan A, Babarro JM, Monari M, Cattani O. Anoxic survival potential of bivalves: (arte) facts. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002; 131: 615624.
  • 31
    Pereira P, Dias E, Franca S, Pereira E, Carolino M, Vasconcelos V. Accumulation and depuration of cyanobacteria paralytic shellfish toxins by the freshwater mussel Anodonta cygnea. Aqua. Toxicol. 2004; 68: 339350.
  • 32
    Lassus P, Ledoux M, Bardouil M, Bohec M. Influence of initial toxicity and extraction procedure on paralytic toxin changes in the mussel. Toxicon 1993; 31: 237242.
  • 33
    Baker SM, Levinton JS. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 2003; 505: 97105.
  • 34
    Bricelj M, Shumway S. Paralytic shellfish toxins in bivalve mollusks: occurrence, transfer kinetics and biotransformation. Rev. Fish. Sci. 1998; 6: 315383.
  • 35
    Granmo A, Ekelund R, Magnusson K, Berggren M. Lethal and sublethal toxicity of 4-nonylphenol to the common mussel (Mytilus edulis L.). Environ. Pollut. 1989; 59: 115127.
  • 36
    Levine C, Cheney MA. Metabolic responses to acute toxicity of akylphenols and alkylphenol polyethoxylates in Elliptio complanata measured by calorespirometry. Environ. Toxicol. Chem. 2000; 19: 19061910.
  • 37
    Naimo TJ, Atchison GJ, Holland-Bartels LE. Sublethal effects of cadmium on physiological responses in the pocketbook mussel, Lampsillis ventricosa. Environ. Toxicol. Chem. 1992; 11: 10131021.
  • 38
    Sobral P, Widdows J. Effects of copper exposure on the scope for growth of the clam Ruditapes decussates from southern Portugal. Mar. Poll. Bull. 1997; 34: 9921000.
  • 39
    Widdows J, Donkin P. Role of physiological energetics in ecotoxicology. Comp. Biochem. Physiol. C 1991; 100: 6975.
  • 40
    Widdows J, Page DS. Effects of tributyltin and dibutyltin on the physiological energetics of the mussel, Mytilus edulis. Mar. Environ. Res. 1993; 35: 233249.
  • 41
    Sze PWC, Lee SY. Effects of chronic copper exposure on the green mussel Perna viridis. Mar. Biol. 2000; 137: 379392.
  • 42
    Doroudi MS, Southgate PC, Lucas JS. Variation in clearance and ingestion rates by larvae of the black-lip pearl oyster (Pinctada margaritifera L.) feeding on various microalgae. Aquacult. Nutr. 2003; 9: 1116.
  • 43
    Lewis MA, Dantin DD, Walker CC, Kurtz JC, Greene RM. Toxicity of clay flocculation of the toxic dinoflagellates, Karenia brevis, to estuarine invertebrates and fish. Harmful Algae 2003; 2: 235246.