Get access

The peak stress method applied to fatigue assessments of steel and aluminium fillet-welded joints subjected to mode I loading

Authors


Correspondence: G. Meneghetti. E-mail: giovanni.meneghetti@unipd.it

ABSTRACT

The aim of this work is to present an engineering method based on linear elastic finite element (FE) analyses oriented to fatigue strength assessments of fillet-welded joints made of steel or aluminium alloys and subjected to mode I loading in the weld toe region where fatigue cracks nucleate. The proposed approach combines the robustness of the notch stress intensity factor approach with the simplicity of the so-called ‘peak stress method’. Fatigue strength assessments are performed on the basis of (i) a well-defined elastic peak stress evaluated by FE analyses at the crack initiation point (design stress) and (ii) a unified scatter band (design fatigue curve) dependent on the class of material, i.e. structural steel or aluminium alloys. The elastic peak stress is calculated by using rather coarse meshes with a fixed FE size. A simple rule to calculate the elastic peak stress is also provided if a FE size different from that used in the present work is adopted. The method can be applied to joints having complex geometry by adopting a two-step analysis procedure that involves standard finite element (FE) models like those usually adopted in an industrial context. The proposed approach is validated against a number of fatigue data published in the literature.

Ancillary