SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Bathias, C. and Paris, P. C. (2005) Gigacycle Fatigue in Mechanical Practice. Marcel Dekker, New York .
  • 2
    Mughrabi, H. (2006) Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int. J. Fatigue 28, 15011508.
  • 3
    Paris, P. C., Marines-Garcia, I., Hertzberg, R. W. and Donald, J. K. (2004) The relationship of effective stress intensity factor, elastic modulus and Burger's-vector on fatigue crack growth as associated with “Fish Eye” gigacycle fatigue phenomena. Proceedings of the Third International Conference on Very High Cycle Fatigue (VHCF-3), Kyoto , Japan , pp. 1619.
  • 4
    Marines-Garcia, I., Paris, P. C., Tada, H. and Bathias, C. (2006) Fatigue crack growth from small to large cracks in gigacycle fatigue with fish-eyes failure. 9th International Fatigue Congress, Atlanta , Georgia , USA .
  • 5
    Marines-Garcia, I., Paris, P. C., Tada, H. and Bathias, C. (2007) Fatigue crack growth from small to long cracks in VHCF with surface initiations. Int. J. Fatigue 29, 20722078.
  • 6
    Ranc, N., Wagner, D. and Paris, P. C. (2008) Study of thermal effects associated with crack propagation during very high cycle fatigue. Acta Materiala 56, 40124021.
  • 7
    Luong, M. P. (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech. Mater. 28, 155163.
  • 8
    Liaw, P. K., Wang, H., Jiang, L., Yang, B., Huang, J. Y., Kuo, R. C. and Huang, J. G. (2000) Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz. Scripta. Mater. 42, 389395.
  • 9
    Yang, B., Liaw, P. K., Wang, H., Jiang, L., Huang, J. Y., Kuo, R. C. and Huang, J. G. (2001) Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Mat. Sci. Eng. A 314, 131139.
  • 10
    Fargione, G., Geraci, A., La Rosa, G. and Risitano, A. (2002) Rapid determination of the fatigue curve by the thermographic method. Int. J. Fatigue 24, 1119.
  • 11
    Curà, F., Curti, G. and Sesana, R. (2005) A new iteration method for the thermographic determination of fatigue limit in steels. Int. J. Fatigue 27, 453459.
  • 12
    Boulanger, T., Chrysochoos, A., Mabru, A. and Galtier, A. (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int. J. Fatigue 26, 221229.
  • 13
    Meneghetti, G. (2007) Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int. J. Fatigue 29, 8184.
  • 14
    Morabito, A. E., Chrysochoos, A., Dattoma, V. and Galietti, U. (2007) Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. Int. J. Fatigue 29, 977984.
  • 15
    Beghi, M., Bottani, C. E. and Caglioti, G. (1984) Temperature variations around the crack tip during fracture test. Italy-Switzerland workshop, Lugano, 24–25 May.
  • 16
    Harvey II, D. P., Bonenberger, R. J. and Wolla, J. W. (1998) Effects of sequential cyclic and monotonic loadings on damage accumulation in nickel 270. Int. J. Fatigue 4 , 291300.
  • 17
    Mason, W. P. (1950) Piezoelectronic Crystals and their Application. Ultrasonics, Van Nostrand, New York .
  • 18
    Wu, T. Y., Ni, J. G. and Bathias, C. (1993) Automatic in Ultrasonic Fatigue Machine to Study Low Crack Growth at Room and High Temperature. ASTM STP 1231, 598607.
  • 19
    Bathias, C. and Ni, J. G. (1993) Determination of Fatigue Limit between 105 and 109 cycles using an Ultrasonic Fatigue Device. ASTM STP 1211, 151152.
  • 20
    Bathias, C. and Pineau, A. (2008) Fatigue des matériaux et des structures. Lavoisier, France .
  • 21
    Sakai, T. (2007) Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. Fourth International Conference on Very High Cycle Fatigue (VHCF-4), TMS (The Minerals, Metals& Materials Society), pp. 312.