• parabrachial area;
  • visceroception;
  • nociception;
  • retrograde tracing;
  • immunocytochemistry;
  • rats


This study concerns the involvement of calbindin-D28K (CaBP28k)-containing neurons in the efferent projections of both the trigeminal nucleus caudalis and the dorsal vagal complex (nucleus of the solitary tract and area postrema) in rats. Recent evidence has shown that these projections are particularly important for the processing of visceroception and/or nociception at central levels. The trigeminal nucleus caudalis has dense projections to both the nucleus of the solitary tract and the parabrachial area; the dorsal vagal complex is intimately connected to the parabrachial area. CaBP28k is a calcium-binding protein the function of which could be a determining factor in controlling the excitability of cells by acting on intrinsic calcium metabolism. CaBP28k content of projections was ascertained using a double labelling approach that combined the retrograde transport of a protein - gold complex to identify projection cells and immunocytochemistry to identify CaBP28k-positive cells. The trigeminal nucleus caudalis is rich in both CaBP28k-immunoreactive cells and cells projecting to the parabrachial area or the nucleus of the solitary tract. Cells containing both the protein and the retrograde tracer, however, were mostly restricted to the superficial layers (laminae I and outer II) and to their rostral extensions, the dorsal paramarginal and paratrigeminal nuclei. These trigeminal subdivisions are targets for nociceptive, visceroceptive and thermal inputs of peripheral origins. The dorsal vagal complex is rich in CaBP28k. Dense populations of immunoreactive cells are observed in the ventrolateral part of the area postrema and all of the three main subdivisions of the nucleus of the solitary tract (rostral gustatory, ventrolateral respiratory and medial cardiovascular subregions). The subnucleus commissuralis, subnucleus centralis and dorsal subnuclei are particularly densely stained. The subnucleus centralis, which is involved in regulating food and water intake, does not project to the parabrachial area. The area postrema, subnucleus commissuralis and dorsal subnuclei, which are implicated in cardiovascular and/or ingestive behaviours, have dense projections to the parabrachial area, many of which contain CaBP28k. The present results demonstrate that CaBP28k-containing cells form a major part of the solitary and trigeminal projection systems, including subregions that are involved in visceroception and/or nociception processing. The location of solitary nucleus projection cells overlaps those of some neuropeptidergic projecting populations, suggesting colocalization. Consequently, certain neuropeptidergic actions may be CaBP28k-dependent.