Calbindin-D28K (CaBP28k)-like Immunoreactivity in Ascending Projections

II. Spinal Projections to Brain Stem and Mesencephalic Areas

Authors


D. Menétrey, 2 rue ?Alésia, F 75014 Paris, France

Abstract

This study concerns the involvement of calbindin-D28K (CaBP28k)-containing neurons in ascending spinal projections to the brainstem (nucleus of the solitary tract, lateral reticular nucleus area), pontine (parabrachial area) and mesencephalic (periaqueductal grey) structures. All these central structures are important in the processing of visceroception and visceronociception and all are targets for spinal efferents from similar areas. CaBP28k controls the excitability of cells by acting on intrinsic calcium metabolism. Results refer to the caudal spinal areas where the visceroceptive regions are concentrated. Experiments were performed through a double labelling approach that combined the retrograde transport of a protein - gold complex to identify the projection cells and immunohistochemistry to identify the CaBP28k-positive cells. The caudal spinal cord is rich in both CaBP28k-containing and projection cells. Cells colocalizing the protein and the retrograde tracer were quite numerous, with a particularly high concentration in the superficial layers of the dorsal horn (laminae I and outer II) and the lateral spinal nucleus. The other spinal areas containing immunoreactive projection cells were the reticular part of the neck of the dorsal horn, the medial laminae VII and VIII, lamina X and the sacral parasympathetic nucleus. The superficial layers and the neck of the dorsal horn are targets for nociceptive, visceroceptive and thermal inputs; the sacral parasympathetic column and lamina X are involved in visceroceptive integration. A functional role for the lateral spinal nucleus has not yet been established. Quite similar results were obtained for each of the ascending pathways under study. The high incidence of CaBP28k in spinal pathways suggests that calbindin has a major role in controlling the excitability of spinal cells subserving the processing of visceroception and/or visceronociception information to supraspinal levels. The participation of CaBP28k-immunoreactive cells in spinal ascending tract cells largely outnumbers those previously reported for various neuropeptides (Leah et al., Neuroscience, 24, 195–207, 1988)

Ancillary