• cerebral cortical cultures;
  • spinal cord;
  • cerebellum;
  • neurotransmitter release;
  • neurite outgrowth;
  • commissural interneurons;
  • parallel fibres;
  • rat


Synaptophysin, a 38-kD glycoprotein, is one of the most abundant of the integral membrane proteins of small synaptic vesicles. The protein is widely distributed at synapses throughout the nervous system, where it is believed to be involved in the exocytosis of stored neurotransmitter. We show here that synaptophysin is also widely expressed in growing neurites and growth cones both in vitro and in vivo. In dissociated rat cerebral cortical cultures anti-synaptophysin antiserum (G-95) stains growth cones punctately as soon as they emerge from the cell body. In early cultures all neurites are immunoreactive. Later, synaptophysin is redistributed to become concentrated in axonal varicosities. In developing rat embryos, synaptophysin is expressed in the growing axons of, for instance, the spinal commissural interneurons and the parallel fibres of the cerebellar granule cells long before these neurons have established synaptic connections. These observations suggest that synaptic vesicle proteins like synaptophysin are functionally important in neuronal development.