• cerebellum;
  • cochlear nuclei;
  • vestibular nuclei;
  • trigeminal nuclei;
  • motor nuclei;
  • pontine nuclei


Quail rhombomeres two to six (r2-r6) were individually grafted homotopically into the hindbrain of chick embryos at 2 days of incubation. Nine to 10 days after the operation the chimeric embryos were fixed and processed for parallel cytoarchitectural and immunocytochemical study (with an anti-quail antibody) in order to map the anatomical fate of the grafted tissue. Emphasis was placed on conventionally identified and distinct neuronal populations composing the sensory and motor longitudinal columns. Grafted rhombomeres consistently developed as complete transverse slices of the chimeric hindbrain. Interrhombomeric cell migration was either sparse or restricted to specific nuclei. The cranial nerve motor nuclei showed rhombomeric origins consistent with the patterns described in early embryos. Unexpectedly, alar r2 was found to form the auricular part of the cerebellum. As regards the cochlear nuclei, we found that nucleus angularis derives from r3 to r6, nucleus laminaris from r5 to r6, nucleus magnocellularis from r6 to r7 and nucleus olivaris superior from r5. The nuclei of the lateral lemniscus originated between r1 and r3. We also delimited the respective rhombomeric subdivisions of the sensory vestibular and trigeminal columns, both of which extend from r1 caudalwards throughout the hindbrain. There were consistently some interrhombomeric neuronal migrations inside the vestibular column, some motor nuclei and the reticular formation, involving only one rhombomere length. The pontine nuclei, which extended from r1 to r7, showed neuronal migrations that crossed several rhombomeres. On the whole, these results represent the first anatomical analysis of the mature avian hindbrain in terms of rhombomere-derived domains.