• calcium-binding protein;
  • hippocampus;
  • neurodegeneration;
  • neuroprotection;
  • rat


The effects of kainic acid on the survival of principal neurons and parvalbumin-immunoreactive (PARV-IR) neurons, and on the expression of heat shock protein 72 immunoreactivity (HSP72-IR) were investigated in organotypic hippocampal slice cultures. Untreated cultures displayed an organotypic organization and the development and morphology of PARV-IR neurons in the hippocampus paralleled that reported to occur in vivo, with the exception of the hilar region of the dentate gyrus which exhibited a marked lack of PARV-IR neurons. No constitutive expression of HSP72 was found in untreated cultures. The lesion of CA3 neurons and the reduction in numbers of PARV-IR neurons in both CA3 and CA1 after chronic exposure to 5 μM kainic acid were similar to those reported to occur in vivo. Exposure to 1 μM doses of kainic acid resulted in a widespread appearance of HSP72-IR and the induction of tolerance to a previously toxic dose of kainic acid. These results suggest the presence of endogenous neuroprotective mechanisms, activated by a stress response which induces HSP72, and is reminiscent of the induced tolerance reported to occur after a mild ischaemic insult.