• selective pressure-block;
  • ocular dominance profile;
  • peak discharge rate;
  • velocity preference;
  • direction selectivity


We analysed the receptive field properties of neurons in the posteromedial lateral suprasylvian (PMLS) visual cortical area of anaesthetized cats in which there was selective conduction block of the largest (Y-type) fibres in one optic nerve. As in normal cats, in cats with selective block of one optic nerve the great majority of PMLS cells could be activated by photic stimulation through either eye. However, the responses evoked by stimulation via the eye with the selectively pressure-blocked optic nerve (‘Y-blocked eye’) were significantly weaker than those of the same cells evoked by the stimulation via the normal eye. Accordingly, eye dominance histograms were shifted markedly in favour of the normal eye. Furthermore, there was a significant shift towards lower preferred velocities when PMLS cells were photically stimulated via the Y-blocked eye. Finally, when stimulated via the Y-blocked eye, PMLS cells responded poorly or not at all to high stimulus velocities (≤100°/s). On the other hand, a number of receptive field properties, such as the spatial organization of receptive fields, the size of the discharge fields, orientation tuning and direction selectivity indices, were not significantly affected by the removal of the Y input. We conclude that virtually all neurons in the PMLS area of the cat receive excitatory input from both Y and non-Y information channels, although the Y channel provides the dominant input and makes the principal contribution to the detection of high-velocity motion.