SEARCH

SEARCH BY CITATION

Keywords:

  • 192 IgG-saporin;
  • acetylcholine;
  • basal forebrain;
  • spatial alternation;
  • spontaneous object recognition

Abstract

The perirhinal cortex of the temporal lobe has a crucial role in object recognition memory. Cholinergic transmission within perirhinal cortex also seems to be important for this function, as the muscarinic receptor antagonist scopolamine disrupts object recognition performance when administered systemically or directly into perirhinal cortex. In the present study, we directly assessed the contribution of cholinergic basal forebrain input to perirhinal cortex in object recognition. Selective bilateral removal of the cholinergic basal forebrain inputs to perirhinal cortex was accomplished by injecting the immunotoxin 192 IgG-saporin directly into perirhinal cortex in rats. These animals were significantly impaired relative to vehicle-injected controls in a spontaneous object recognition task despite intact spatial alternation performance. These results are consistent with recent reports of object recognition impairment following acute cholinergic receptor blockade and extend these findings by demonstrating that chronic removal of cholinergic basal forebrain input to an otherwise intact perirhinal cortex causes a severe object recognition deficit similar to that associated with more extensive cell body lesions of perirhinal cortex.