Get access

Differentiation of an auditory neuronal cell line suitable for cell transplantation


Dr M. C. Holley, as above.


The auditory neuroblast cell line US/VOT-N33 (N33), which is conditionally immortal, was studied as an in vitro model for the differentiation of spiral ganglion neurons (SGNs) and as a candidate for cell transplantation in rodents. It expresses numerous molecular markers characteristic of auditory neuroblasts, including the transcription factors GATA3, NeuroD, Brn3a and Islet1, as well as the neuronal cytoskeletal protein β3-tubulin. It displays active migratory behaviour in vitro and in vivo. In the presence of the fibroblast growth factors FGF1 or FGF2 it differentiates bipolar morphologies similar to those of native SGNs. In coculture with neonatal cochlear tissue it is repelled from epithelial surfaces but not from native SGNs, alongside which it extends parallel neuronal processes. When injected into the retina in vivo, EGFP-labelled N33 cells were traced for 1–2 weeks and migrated rapidly within the subretinal space. Cells that found their way into the retinal ganglion cell layer extended multiple processes but did not express β3-tubulin. The ability of N33 to migrate, to differentiate, to localize with native SGNs in vitro and to survive in vivo suggests that they provide an effective model for SGN differentiation and for cell transplantation into the ear.

Get access to the full text of this article