• brain–machine interface;
  • EMG;
  • motor cortex;
  • multielectrode physiology;
  • posterior parietal cortex;
  • premotor cortex;
  • somatosensory cortex


Previously we have shown that the kinematic parameters of reaching movements can be extracted from the activity of cortical ensembles. Here we used cortical ensemble activity to predict electromyographic (EMG) signals of four arm muscles in New World monkeys. The overall shape of the EMG envelope was predicted, as well as trial-to-trial variations in the amplitude and timing of bursts of muscle activity. Predictions of EMG patterns exhibited during reaching movements could be obtained not only from primary motor cortex, but also from dorsal premotor, primary somatosensory and posterior parietal cortices. These results suggest that these areas represent signals correlated to EMGs of arm muscles in a distributed manner, and that the larger the population sampled, the more reliable the predictions. We propose that, in the future, recordings from multiple cortical areas and the extraction of muscle patterns from these recordings will help to restore limb mobility in paralysed patients.