SEARCH

SEARCH BY CITATION

Keywords:

  • exocytosis;
  • hyposmolarity;
  • nerve endings;
  • norepinephrine

Abstract

Osmolarity reduction (20%) elicited 3H-norepinephrine (NE) efflux from rat cortical synaptosomes. The hyposmotic NE release resulted from the following events: (i) a Na+-dependent and La3+-, Gd3+- and ruthenium red-sensitive depolarization; (ii) a cytosolic Ca2+ ([Ca2+]i) rise with contributions from external Ca2+ influx and internal Ca2+ release, probably through the mitochondrial Na+–Ca2+ exchanger; and (iii) activation of a [Ca2+]i-evoked, tetanus toxin (TeTX)-sensitive, PKC-modulated NE efflux mechanism. This sequence was established from results showing a drop in the hyposmotic [Ca2+]i rise by preventing depolarization with La3+, and by the inhibitory effects of Ca2+-free medium (EGTA; 50%), CGP37157 (the mitochondrial Na+–Ca2+ exchanger blocker; 48%), EGTA + CGP37157 or by EGTA-AM (> 95% in both cases). In close correspondence with these effects, NE efflux was 92% decreased by Na+ omission, 75% by La3+, 47% by EGTA, 50% by CGP37157, 90% by EGTA + CGP37157 and 88% by EGTA-AM. PKC influenced the intracellular Ca2+ release and, mainly through this action, modulated NE efflux. TeTX suppressed NE efflux. The K+-stimulated NE release, studied in parallel, was unaffected by Na+ omission, or by La3+, Gd3+ or ruthenium red. It was fully dependent on external Ca2+, insensitive to CGP37157 and abolished by TeTX. These results suggest that the hyposmotic events, although different from the K+-evoked depolarization and [Ca2+]i rise mechanisms, are able to trigger a depolarization-dependent, Ca2+-dependent and TeTX-sensitive mechanism for neurotransmitter release.