Get access

Long-range oscillatory Ca2+ waves in rat spinal dorsal horn

Authors


Dr J. Sandkühler, as above.
E-mail: juergen.sandkuehler@meduniwien.ac.at

Abstract

Synchronous activity of large populations of neurons shapes neuronal networks during development. However, re-emergence of such activity at later stages of development could severely disrupt the orderly processing of sensory information, e.g. in the spinal dorsal horn. We used Ca2+ imaging in spinal cord slices of neonatal and young rats to assess under which conditions synchronous activity occurs in dorsal horn. No spontaneous synchronous Ca2+ transients were detected. However, increasing neuronal excitability by application of 4-aminopyridine after pretreatment of the slice with blockers of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, γ-aminobutyric acid (GABA)A and glycine receptors evoked repetitive Ca2+ waves in dorsal horn. These waves spread mediolaterally with a speed of 1.0 ± 0.1 mm/s and affected virtually every dorsal horn neuron. The Ca2+ waves were associated with large depolarizing shifts of the membrane potential of participating neurons and were most likely synaptically mediated because they were abolished by blockade of action potentials or N-methyl-d-aspartate (NMDA) receptors. They were most pronounced in the superficial dorsal horn and absent from the ventral horn. A significant proportion of the Ca2+ waves spread to the contralateral dorsal horn. This seemed to be enabled by disinhibition as primary afferent-induced dorsal horn excitation crossed the midline only when GABAA and glycine receptors were blocked. Interestingly, the Ca2+ waves occurred under conditions where AMPA/kainate receptors were blocked. Thus, superficial dorsal horn NMDA receptors are able to sustain synchronous neuronal excitation in the absence of functional AMPA/kainate receptors.

Ancillary